一、温度补偿电路原理?
功放电路中的温度补偿电路的工作原理是在热敏电阻之后,通过一个可调电位器连接到运放电路,由该放大电路负端与电路输出端相连。该电路结构简单,准确可靠,可适用于对温度值漂移大的敏感元件进行温度补偿。
在一些电子产品中,会用到一些正温度系数和负温度系数的电子元件,以电阻为例正温度系数的随温度升高,电阻值升高,负温度系数的正好相反。
应用中比如做一块传感器,如果单用一种温度系数的元件,误差相对会比较大,如果用正负温度系数的元件相结合,正好正负相平衡,误差相对会比较小。
二、低频电路补偿方法?
目前,公知的低音频补偿是采用低音频放大器,把前置放大器输出的信号通过电阻、电容构成的低频带通网络(积分电路),将低音成份选出并对其放大,放大后再送入混频器电路,与中高音频信号相混合后,送入功率放大器,进行功率放大。
通过对低音选频放大器放大倍数(放大量)的调节,实现低音补偿量的调节,达到低音补偿的目地。
三、补偿电路工作原理?
1)VT1等构成一种放大器电路,对于放大器而言要求它的工作稳定性好,其中有一条就是温度高低变化时三极管的静态电流不能改变,即VT1基极电流不能随温度变化而改变,否则就是工作稳定性不好。了解放大器的这一温度特性,对理解VD1构成的温度补偿电路工作原理非常重要。
(2)三极管VT1有一个与温度相关的不良特性,即温度升高时,三极管VT1基极电流会增大,温度愈高基极电流愈大,反之则小,显然三极管VT1的温度稳定性能不好。由此可知,放大器的温度稳定性能不良是由于三极管温度特性造成的。
四、用MOS管搭建理想二极管电路,这个电路该怎么完善?
加个反相器,如图:
五、常见的温度补偿电路?
温度补偿电路,属于电子线路技术领域,包括电路中采用的稳压二极管,热敏电阻。温度补偿电路的连接关系中,在热敏电阻之后,通过一个可调电位器连接到运放电路,由该放大电路负端与电路输出端相连。
该电路结构简单,准确可靠,可适用于对温度值漂移大的敏感元件进行温度补偿。
六、单相电容补偿电路?
单相电容补偿的电路:应用于三相负荷基本平衡的系统中。
三相分补即单相电容器分相补偿方式:采用单相电容器分相补偿的办法,是根据每相的无功大小进行补偿,对无功较大的相多投补偿电容,对无功较小的相少投甚至不投补偿电容。这种方法虽然能够使每相的功率因数得到有效的补偿,主要应用于三相不平衡系统中。
七、频率补偿电路原理说明?
原理:
频率补偿就是构造一个频率补偿电路,使得它与前级模拟传感器特性电路串联后电路的总频响在一定的频带内趋于常数。 负反馈补偿使放大器增益下降,但改善电路的稳定性,展宽电路的通频带;发射极电容补偿提升高频信号增益;电感并联补偿主要考虑三极管分布电容的影响。
八、电路原理补偿定理?
在测量电动势时,如果用电压表直接测量的话,由于电压表也有一定电流通过,测出的值是电池的路端电压,而不是电源的电动势.所以要想消除电源的内阻影响,测出电源的电动势,就要用一个电压与电源互相抵消,这就是补偿法。
电容补偿就是无功补偿或者功率因数补偿。电力系统的用电设备在使用时会产生无功功率,而且通常是电感性的,它会使电源的容量使用效率降低,而通过在系统中适当地增加电容的方式就可以得以改善。 电力电容补偿也称功率因数补偿!(电压补偿,电流补偿,相位补偿的综合)
九、运放补偿电路原理?
Rc : 滤波电容的ESR
R :负载
Gvd= Vin*z1/(z1+z2)
z1= (Rc+1/SC)//R
z2 = SL
Gvd = Vin(1+SCRc)/ (1+ S(L/R+RcC)+s2(LC(R+Rc)/R) ( L/R>>RcC ; R>>Rc)
超前滞后补偿法:二个零点,三个极点
参考端的电平不用考虑,不管是地还是2.5V,都可以当作零.虽然参考是地或2.5V的时候运放的输出的电平不同,但传递函数指的是输出的变化对应输入的变化,即dVout/dVin,而不是它们的绝对值之比Vout/Vin.
求运放的传递函数时它的参考电压要忽略,假设为0。因为传递函数是小信号的交流量来说的,参考是直流量。因此传递函数
G (s) =-Z1/Z2 Z1=(1/SC3)//(1/SC1+R2); Z2=R1//(1/SC2+R3)
十、运放温度补偿电路?
运放温度补偿的电路是让温度传感器的自由端的参考温度能做到更加的适当。大多数的温度传感器都需要温度补偿,常用的温度补偿方法有电桥补偿法。
在一些电子产品中,会用到一些正温度系数和负温度系数的电子元件,以电阻为例正温度系数的随温度升高,电阻值升高,负温度系数的正好相反。
应用中比如做一块传感器,如果单用一种温度系数的元件,误差相对会比较大,如果用正负温度系数的元件相结合,正好正负相平衡,误差相对会比较小。
- 相关评论
- 我要评论
-