1. 手持三维激光扫描仪价格
觉得你的问题描述不是特别准确,以下解释希望对你有所帮助:
1. 影像测量仪采用的方法是主动光或者被动光通过放大图像几十倍,进行的一种边缘拟合提取,所谓的三维也就是两维半,加了触笔或者探针检测Z向高度而已。一般的精度可高达微米级别(0.003mm~0.005mm)。典型的如美国的OGP、台湾智泰等;
2. 三维激光扫描分为手持激光扫描仪、台式激光扫描仪,相比之下台式激光扫描仪精度稍高点,但测量物体一般体积受行程限制,不会太大,如国内的思锐;手持激光扫描仪比较轻便灵活,如加拿大的handsacn;但无论哪种激光扫描,实际使用中最终测量精度均在0.05mm-0.1mm,切测量数据噪声较大;
3. 拍照式三维扫描仪,采用主动编码光栅投射物体表面,单相机或者双相机采集图像立体解算,一般单幅测量精度可高达0.008mm-0.03mm范围,测量对象可以是几个毫米到几十米,不受行程限制对于复杂曲面效率高,速度快,但不足之处如测头不够轻便、数据量大等。典型的此类设备如:德国GOM 公司的ATOS,国内西安交大自主研发的XJTUOM、北京天远的OKIO系列三维扫描等。
2. 三维扫描仪的价格
三d扫描助手好用,是可靠的。
3D扫描助手是一款超级实用的扫描工具软件,功能非常的齐全,我们可以快速的去对一些文件进行传输,扫描的速度也是相当的快的,并且可以实时的查看到我们自己的扫描记录,方便后期去进行查找文件
3. 三维激光扫描仪多少钱一台
1、把扫描仪与用USB线电脑连接上,把文件放入扫描仪。
2、点击【计算机】,点击打开【扫描仪】。长距离三维激光扫描仪脉冲式长测程三维激光扫描仪,地形测绘边坡监测
3、在弹出的对话框中选择【扫描仪和照像机向导】,再点击【确定】。
4、打开程序后点击下一步
5、然后根据提示选择选择图片类型【彩色照片】,纸张来源【平板】,再点击【下一步】。
6、弹出的对话框,根据自己的需要输入文件名,文件格式,保存位置点击“下一步”。
7、开始扫描,扫描完成后点击完成。
8、可以再存储位置找到扫描出的文件。
4. 手持三维激光扫描仪器
三维激光扫描技术又称为实景复制技术,利用激光测距原理,通过高速激光扫描测量方法,大面积、高分辨率地获取被测对象表面的高精度三维坐标数据以及大量空间点位信息,可以快速建立高精度(精度可达毫米级)、高分辨率的物体真实三维模型以及数字地形模型。是测绘领域继GPS技术之后的又一次技术革命。
三维激光扫描系统通过扫描目标物体,可获得海量的高精度空间三维点云数据,单点精度可达到毫米级,并且可具有真实色彩信息。获取的点云模型能充分体现出目标物体的三维特征信息。根据不同的需求,通过对点云数据的分析、处理,可以获得满足不同需求的丰富数据,从而在不同领域发挥不可比拟的重要作用。
相较于传统二维平面图纸的抽象表示,三维激光扫描技术,可以直观反映真实世界的本来面目,应用领域非常广泛,主要有文物古迹保护、建筑、规划、土木工程、工厂改造、室内设计、建筑监测、交通事故分析、法律证据收集、灾害评估、船舶设计、数字城市、军事等。
三维激光扫描系统根据其搭载的不同的平台分为:
(1) 固定式激光扫描系统。也称地面三维激光扫描仪,使用时在地面不同方位设置测站进行扫描。
(2) 车载激光扫描系统。以汽车作为平台,在连续移动过程中连续快速扫描。
(3) 机载激光扫描系统。以无人机或有人机作为平台,在空中对地面进行连续快速扫描。
(4) 手持型激光扫描系统。属于便携式激光扫描仪,使用简单、快捷、轻便。
(5) 背包式激光扫描系统。采用人工背包式背负作业,能适应复杂路线及环境。
应用领域:
一、古建文物保护领域
根据扫描获取的点云数据,生成古建正射影像。
根据正射影像可绘制古建平面、立面及剖面图等传统施工图纸。
根据三维点云模型可辅助建模,细节更加丰富,模型更加真实准确,方便后续对古建的修复、维护及展示等工作。
二、工程领域
1. 地形测量
三维激光扫描技术在测绘领域,其最基本的应用之一就是地形图绘制。基于扫描的精细点云可直接生成三维地形模型,自动提取等高线,同时可获取三维及二维数据资料。与传统测绘手段相比,三维激光扫描具有:效率高、细节丰富、成果形式多样。一次测量,地物、地形同时获得。
3D数字高程
三维地表模型
2. 规划、设计
项目规划设计阶段,首要工作是获得项目及周边的环境信息,环境信息越充分,规划设计工作越得心应手。采用三维激光扫描技术对项目目标环境进行扫描,取得的高精度三维模型,不仅直观、真实,而且包含有项目目标的全部空间信息,对规划设计工作可以起到事半功倍的效果。
在取得的三维空间信息的基础上,可以进一步进行日照分析、管道分析等。
3. 老旧建筑的维护、修复、测量
对于老旧建筑,采用三维扫描技术可以逆向绘制CAD图纸,辅助进行设计、施工、测量等工作。
三维激光扫描点云模型可以获得现状建筑的全面数据。根据点云模型返画CAD图可获得高精度的设计图纸。
4. 工程测量
由于具有高精度、扫描数据全面的特点,三维激光扫描技术可代替传统的工程测量,并在某些方面解决传统手段解决不了的难题,发挥独特的作用。
(1) 监理测量
三维激光扫描是真实场景的复制,资料具有客观可靠性,为监理隐蔽工程、重点部位工程质量提供有效依据,为避免日后的纠纷提供了客观依据。
(2) 竣工测量
竣工测量要求对实际施工完成的建筑物进行测量,基于对实景扫描及高精度的特点,三维激光扫描技术在对异形建筑测量等方面,可以发挥独特的优势。
(3) 隧道测量
通过三维激光扫描仪进行测量,获取隧道表面海量数据点,可生成真实隧道模型,无论是超欠挖分析还是收敛变形分析,结果都更加精准。
数据全面,海量点云,还原隧道真实形态,细节也清晰可辨,数据可随意查看。
结果精准,可达毫米级的测量精度,准确反映隧道变化情况。
收敛变形分析。基于多期数据,可进行隧道收敛变形分析。
超欠挖分析。通过点云模型与设计模型进行对比,可自动生成超欠挖报告,得到各段超欠挖体积分析,同时也可在任意断面处查看形态对比。
5. 变形监测
由于三维激光扫描技术具有高精度的特点,在一定的条件控制下,精度可达到1毫米以内,三维激光扫描技术可以用来对变形进行监测。主要应用在建筑物变形监测、基坑变形监测、桥梁变形监测、隧道变形监测以及地表形变监测等方面。
建筑物变形监测
基坑变形监测
桥梁变形监测
6. 土方和体积测量
采用三维激光扫描仪对现场地形地貌进行扫描,获得现场高精度三维地形数据,对相关数据进行处理后可以计算出土方工程量或其它相关体积。
根据项目情况,采用地面三维激光扫描仪在不同站点进行扫描。
扫描后,现场原始地貌被真实、直观、精确记录。
根据需要可以处理出地形图、等高线、三维模型等各种数据成果。
现场标高点位数据可现场进行复核。
测量成果可进行存档,土方体积计算可采用方格网等方式进行复核,方便后续审计、结算。
7. 三维扫描+BIM应用
三维激光扫描与BIM均以三维模型为中心,两者存在天然的相关性。三维激光扫描是BIM应用中最基础的一个重要环节,对现场三维实际进行采集后与BIM进行结合,才能发挥BIM技术的应用价值。
(1) 三维扫描协助BIM进行逆向建模
通过三维激光扫描取得真实、精确点云模型。
采用相关软件辅助建立BIM模型。
在没有目标图纸资料的情况下,采用三维激光扫描建立BIM模型是最高效的手段。建筑建成后,即使有原始图纸资料,采用三维激光扫描建立的BIM模型更符合实际修建完成的建筑,方便后期的运营管理。
(2) 辅助装饰装修等二次设计
扫描取得的点云模型提供直观及全面的原始室内原始设计数据。
在真实模型基础上进行的装修设计更加完善、减少变更及返工。
在真实模型基础上进行幕墙设计可以提高设计精度和施工质量。
(3) 施工检测及验收
BIM模型可以指导施工,三维扫描模型可以描述真实情况,将两者进行对比,不仅可以发现施工偏差,还可以检测施工质量。
实际施工模型与设计BIM模型对比,可以检查施工偏差情况。
施工偏差及施工质量分析数据一目了然。
8. 工程存档及展示
在工程建设当中,有很多工程存档及项目展示的需要,采用三维激光扫描技术可以全面对工程进行存档,全方位对工程进行展示,满足工程后期结算、索赔,以及对样板工程进行展示的需要。
9. 钢结构检测
采用三维扫描技术将复杂零部件的三维尺寸精确进行扫描,并将得到的点云与设计模型做精确地三维偏差分析,从而分析出零部件与设计模型的偏差,检测制作质量。
无接触式自动测量,高效快捷。
海量三维真彩色点云数据,即便是复杂异形钢构件也可全面测量记录。
毫米级测量精度,保证检测结果准确,采用色谱图反映实际制造成果与设计模型间偏差,显示更加全面直观。
10. 公路改扩建测量
在公路改扩建工程中,对已有旧路占地边线、路基、路面、桥涵的测量和现状描述对设计过程中的参考与决策尤为重要。采用车载激光扫描测量系统,每秒百万点的测量速率,40-60公里每小时的行驶速度,可快速获得路面点坐标信息及道路两侧地形情况。数据获取的质量和有效性高于传统的人工采集。
通过先进算法进行点云解算,点云精度可达5cm,满足公路改扩建测量精度要求。
成果丰富。海量点云可提取车道线,生成公路横断面、地形图等成果。
三、电力管理领域
对已建成的电力网络,需要有效地对其进行巡线管理,以确保电力的安全输送。
多平台激光雷达系统具有快速获取高精度激光点云和高分辨率数码影像的优点,可以获得输电线路相关距离测量的数据,适用于对新建线路的走向选择设计、对已建线路的危险点巡线检查、线路资产管理以及各种专业分析。
以高精度、高分辨率正射影像和激光点云数据为基础,结合架空送电线路设计业务需求,实现线路路径优化设计、杆塔优化设计的一体化全流程应用。基于剖面进行塔位优化,根据塔位坐标数据、塔基断面数据对线路各种指标进行统计分析。
利用无人机激光雷达系统获取的高精度点云可以检测建筑物、植被、交叉跨越等对线路的距离是否符合运行规范,线间距是否满足安全运行的要求;同时相机获取的高清晰度的影像,可以让巡检人员在室内进行线路设施设备和通道异常的判别。根据分类得到的电力线、植被和地面等分类的点云,可以计算出靠近电力线的植被并标记出来,可以起到预警的效果。
通过采集的高精度激光点云和高分辨率数码影像数据,处理成DOM、DEM,结合分类后的点云,可以实现电力线路三维建模,恢复线路走廊地形地貌、地表附着物(树木、建筑等)、线路杆塔三维位置和模型等,辅以线路设施设备参数录入,可实现线路资产管理。
四、影视制作领域
在影视拍摄中,一些特殊的场景和道具无法进行实拍,或者在一些大型动画的制作中,采用三维激光扫描技术对场景或道具进行扫描、建模,然后利用计算机进行后期制作,在大大减少人力投入的同时,效果也更显逼真。
五、结语
三维激光扫描技术的应用远不仅限于以上场景,由于与真实三维世界高度契合,符合大数据时代的技术发展趋势,三维激光扫描技术应用必定在相关领域中快速发展、大展身手,让我们拭目以待......
5. 三维激光扫描仪 价格
国内上市公司中海达(300177)多波束、三维激光扫描仪等工程样机研制成功,可广泛应用于文物考古、古建筑的修缮、地形地貌测量、数字城市建设、等领域。
6. 手持式三维激光扫描仪
非常好用
在测量速度方面,三维扫描的测量效率可以达到CMM的数倍,这样可以提高检测频率,更快速的发现问题并分析产品的变化。经过我们的实际现场测试,扫描一辆完整的白车身只需要3个小时,同时由于使用的是手持三维扫描仪,所以可以完成车厢内部及底部等狭小空间的扫描工作。而且设备动态跟踪,可以无限扩展量程,因此不管是几厘米的零部件,还是几米的汽车,都能快速获取精确的三维数据。
7. 三维激光扫描仪介绍
ZOLLER + FRÖHLICH公司是一个家族企业,于1963年成立于瑞士阿尔高州的基尔旺根市的一间地下室,1994年发明了第一台用于轨道测量的激光扫描仪,1996年开发了三维激光扫描仪。
1998年在美国匹兹堡成立Z+F美国公司。两位创始人兄弟 Zoller 和 Fröhlich分别于1977年2009年去世,之后便由Fröhlich兄妹共同经营。2015年,Zoller + Fröhlich 推出具有集成定位系统的激光扫描仪的 3D 测量系统,可实现现场自动注册扫描。
8. 三维激光扫描仪品牌 进口
一般三维扫描仪扫描出来的点云是asc格式可以通过软件转换格式输入到我们需要的各个三维软件中。
geomagicstudio专门处理三维点云的软件,可以把三维点云数据处理成各种需要的格式,可以把数据导入到3dmax、cad、pore、ug、catia、imageware、zbrush等三维软件