1. 传感器终端并联250欧电阻
可以用双线两个光电开关传感器的并联
常开触点:“与”逻辑
常闭触点:“或非”逻辑
闭和触点使传感器的工作电压短路,当触点短开以后只有在准备延迟时间(t≤80ms)之后传感器才处于功能准备状态。
补偿办法:触点上串联一个电阻可以地了传感器的zui小工作电压,因此避免了在机械触点断开之后的准备延迟。
2. 传感器并联电阻有什么用
起到一定的限流作用吧
3. 4-20ma并联250欧电阻
cpu224本体没有模拟量的输入和输出,cpu224XP本体有一路输出(电压和电流同步M,I V)两路输入(M A+,B+,都是0~10V,不能直接接电流信号,电流信号可以在输入端子处并联一个250欧姆的电阻,把0~20mA电流信号转换为0~5V的电压信号),在程序中使用AIW0对应A+和M,AIW2对应B+和M,AQW0对应I,M或V,M
4. 串联250电阻
在工业中常用的手操器一般只能接受电压信号,而远距离信号传输都是4~20mA直流电流信号,根据欧姆定律计算,在信号回路中串接一个250Ω的电阻就可以得到工业标准的1~5V直流电压信号。HART信号加载在电流信号里,手操器要通过回路中串电阻将电流信号转成电压信号才能读取
5. 电阻式传感器实际应用
应变电阻传感器,用来测量拉压应力,以及基于此的其它物理量。
热敏电阻传感器,用来测量温度。
滑臂式电阻传感器,用来测量几何位置(角度,位移)。
磁敏电阻传感器,用来测量磁场。
光敏电阻传感器,用来测量光的强度。
吸湿媒质电阻传感器,用来测量湿度。
液体电阻率传感器,用来测量水溶离子浓度。
6. 上电控制芯片并联电阻
由于电容和电阻是并联接在交流电路中,所以,两个元件两端的电压是相同的;
但两个元件中的电流却不一样,差别就是两个元件中的电流相位相差90°:电阻中的电流与电压同相位;而电容中的电流将超前电阻电流90°。
上电时:电容两端电压不能突变,所以逐渐从最小到最大.电流从最大到最小直至为0
电阻因与电容并联,电压初始最小,最后为最大,据欧姆定律,电流与电压成正比,所以电阻上通过的电流从最小到最大.值为U/R
7. 传感器串联电阻
帝豪的是10K的。 用外用表打到对应的阻值档上量一下,若阻值无穷大则说明传感器损坏。 1、空调温度传感器工作原理 空调温度传感器为负温度系数的热敏电阻,简称NTC,其阻值随温度升高而降低,随温度降低而增大。25℃时的阻值为标称值。 空调温度传感器都是和一个电阻串联以后,对5V(部分空调使用的+3.3V)电压进行分压,分压后的电压送入CPU内部。由于空调温度传感器采用的都是负 温度系数热敏电阻,即在温度升高时其阻值减小,温度降低时其阻值增大。所以CPU的输入电压规律就是;温度升高时,CPU的输入电压升高,温度降低 时,CPU的输入电压随之降低。这一变化的电压进入CPU内部分析处理,来判断当前的管温或室温,并通过内部程序和人为设定,来控制空调的运行状 态。 由于送到CPU的采样电压会随温度高低变化而较大范围内变化,所以厂家在设计时,一般都以25度为准 ,将该采样电压设计成电源电压的一半,以便给温度变化导致的电压变化孵出充分的余地。如果采样电压设计得过高或过低,都将不能正常反映出当前的温度变化。 由于R1、R2、R3各串联电阻的阻值是恒定的,如果不考虑CPU接口的内阻电路阻值(事实上该接口的内部阻值比较大,可以不考虑),那么要保证其A、 B、C三个CPU输入点电压为2.5V左右(在25度下),RT1、RT2、RT3三个传感器就只能昼使用和三个串联电阻(R1、R2、R3)同阻值的传 感器,否则该点电压压降偏离较多。这就是空调温度传感器的工作原理! 2、空调温度传感器的构成 空调常用的NTC有室内环温NTC、室内盘管NTC、室外盘管NTC等三个,较高档的空调还应用外环温NTC、压缩机吸气、排气NTC等。 NTC在电路中,温度变化使NTC阻值变化,CPU端子的电压也随之变化,CPU根据电压的变化来决定空调的工作状态。 3、空调温度传感器的常见故障 NTC常见的故障为阻值变大、开路、受潮霉变阻值变化、短路、插头及座接触不好或漏电等,引起空调CPU检测端子电压异常引起空调故障。下面首先分析室内环温空调温度传感器、室内盘管NTC、室外盘管NTC、排气NTC和吸气NTC的作用,根据这些作用和原理分析出空调温度传感器常见的故障! 1)各种类型NTC的作用 (1)室内环温NTC作用 室内环温NTC根据设定的工作状态,检测室内环境的温度自动开停机或变频。 定频空调使室内温度温差变化范围为设定值 +1℃,即若制冷设定24℃时,当温度降到23℃压缩机停机,当温度回升到25℃压缩机工作;若制热设定24℃时,当温度升到25℃压缩机停机,当温度回落到23℃压缩机工作。 值得说明的是温度的设定范围一般为15℃—30℃之间,因此低于15℃的环温下制冷不工作,高于30℃的环温下制热不工作。 变频空调根据设定的工作温度和室内温度的差值进行变频调速,差值越大压缩机工作频率越高,因此,压缩机启动以后转速很快提升。 (2)室内盘管NTC作用 室内盘管制冷过冷(低于+3℃)保护检测、制冷缺氟检测;制热防冷风吹出、过热保护检测。 空调制冷30分钟自动检查室内盘管的温度,若降温达不到20℃则自动诊断为缺氟而保护。若因某些原因室内盘管温度降到+3℃以下为防结霜也停机(过冷) 制热时室内盘管温度底于32℃内风机不吹风(防冷风),高于52℃外风机停转,高于58℃压缩机停转(过热);有的空调制热自动控制内风机风速;有的空调自动切换电辅热变频空调转速控制等。 (3)室外盘管NTC作用 制热化霜温度检测,制冷冷凝温度检测。 制热化霜是热泵机一个重要的功能,第一次化霜为CPU定时(一般在50分钟),以后化霜则由室外盘管NTC控制(一般为—11℃要化霜,+9℃则制热)。 制冷冷凝温度达68℃停压缩机,代替高压压力开关的作用;变频制冷则降频阻止盘管继续升温。 外环温NTC 控制室外风机的转速、冬季预热压缩机等。 (4)排气NTC作用 使变频压缩机降频,避免外机过热,缺氟检测等。 (5)吸气NTC作用 控制制冷剂流量,有步进电机控制节流阀实现。 2)故障分析 室内外盘管NTC损坏率最高,故障现象也各种各样。室内外盘管NTC由于位处温度不断变化及结露或高温的环境,所以其损坏率较高。 主要表现在: (1)电源正常而整机不工作、工作短时间停机、制热时外机正常内风机不运转、外风机不工作或异常停转,压缩机不启动,变频效果差,变频不工作,制热不化霜等。 化霜故障可代换室外盘管NTC或室外化霜板。 (2)在电源正常而空调不工作时也要查室内环温NTC;空调工作不停机或达不到设定温度停机,也要先查室内环温NTC;变频空调工作不正常也会和它有关。因室内环温NTC若出现故障会使得CPU错误地判断室内环温而引起误动作。室内环温NTC损坏率不是很高。 --> 1、空调温度传感器工作原理 空调温度传感器为负温度系数的热敏电阻,简称NTC,其阻值随温度升高而降低,随温度降低而增大。25℃时的阻值为标称值。 空调温度传感器都是和一个电阻串联以后,对5V(部分空调使用的+3.3V)电压进行分压,分压后的电压送入CPU内部。由于空调温度传感器采用的都是负 温度系数热敏电阻,即在温度升高时其阻值减小,温度降低时其阻值增大。所以CPU的输入电压规律就是;温度升高时,CPU的输入电压升高,温度降低 时,CPU的输入电压随之降低。这一变化的电压进入CPU内部分析处理,来判断当前的管温或室温,并通过内部程序和人为设定,来控制空调的运行状 态。 由于送到CPU的采样电压会随温度高低变化而较大范围内变化,所以厂家在设计时,一般都以25度为准 ,将该采样电压设计成电源电压的一半,以便给温度变化导致的电压变化孵出充分的余地。如果采样电压设计得过高或过低,都将不能正常反映出当前的温度变化。 由于R1、R2、R3各串联电阻的阻值是恒定的,如果不考虑CPU接口的内阻电路阻值(事实上该接口的内部阻值比较大,可以不考虑),那么要保证其A、 B、C三个CPU输入点电压为2.5V左右(在25度下),RT1、RT2、RT3三个传感器就只能昼使用和三个串联电阻(R1、R2、R3)同阻值的传 感器,否则该点电压压降偏离较多。这就是空调温度传感器的工作原理! 2、空调温度传感器的构成 空调常用的NTC有室内环温NTC、室内盘管NTC、室外盘管NTC等三个,较高档的空调还应用外环温NTC、压缩机吸气、排气NTC等。 NTC在电路中,温度变化使NTC阻值变化,CPU端子的电压也随之变化,CPU根据电压的变化来决定空调的工作状态。 3、空调温度传感器的常见故障 NTC常见的故障为阻值变大、开路、受潮霉变阻值变化、短路、插头及座接触不好或漏电等,引起空调CPU检测端子电压异常引起空调故障。下面首先分析室内环温空调温度传感器、室内盘管NTC、室外盘管NTC、排气NTC和吸气NTC的作用,根据这些作用和原理分析出空调温度传感器常见的故障! 1)各种类型NTC的作用 (1)室内环温NTC作用 室内环温NTC根据设定的工作状态,检测室内环境的温度自动开停机或变频。 定频空调使室内温度温差变化范围为设定值 +1℃,即若制冷设定24℃时,当温度降到23℃压缩机停机,当温度回升到25℃压缩机工作;若制热设定24℃时,当温度升到25℃压缩机停机,当温度回落到23℃压缩机工作。 值得说明的是温度的设定范围一般为15℃—30℃之间,因此低于15℃的环温下制冷不工作,高于30℃的环温下制热不工作。 变频空调根据设定的工作温度和室内温度的差值进行变频调速,差值越大压缩机工作频率越高,因此,压缩机启动以后转速很快提升。 (2)室内盘管NTC作用 室内盘管制冷过冷(低于+3℃)保护检测、制冷缺氟检测;制热防冷风吹出、过热保护检测。 空调制冷30分钟自动检查室内盘管的温度,若降温达不到20℃则自动诊断为缺氟而保护。若因某些原因室内盘管温度降到+3℃以下为防结霜也停机(过冷) 制热时室内盘管温度底于32℃内风机不吹风(防冷风),高于52℃外风机停转,高于58℃压缩机停转(过热);有的空调制热自动控制内风机风速;有的空调自动切换电辅热变频空调转速控制等。 (3)室外盘管NTC作用 制热化霜温度检测,制冷冷凝温度检测。 制热化霜是热泵机一个重要的功能,第一次化霜为CPU定时(一般在50分钟),以后化霜则由室外盘管NTC控制(一般为—11℃要化霜,+9℃则制热)。 制冷冷凝温度达68℃停压缩机,代替高压压力开关的作用;变频制冷则降频阻止盘管继续升温。 外环温NTC 控制室外风机的转速、冬季预热压缩机等。 (4)排气NTC作用 使变频压缩机降频,避免外机过热,缺氟检测等。 (5)吸气NTC作用 控制制冷剂流量,有步进电机控制节流阀实现。 2)故障分析 室内外盘管NTC损坏率最高,故障现象也各种各样。室内外盘管NTC由于位处温度不断变化及结露或高温的环境,所以其损坏率较高。 主要表现在: (1)电源正常而整机不工作、工作短时间停机、制热时外机正常内风机不运转、外风机不工作或异常停转,压缩机不启动,变频效果差,变频不工作,制热不化霜等。 化霜故障可代换室外盘管NTC或室外化霜板。 (2)在电源正常而空调不工作时也要查室内环温NTC;空调工作不停机或达不到设定温度停机,也要先查室内环温NTC;变频空调工作不正常也会和它有关。因室内环温NTC若出现故障会使得CPU错误地判断室内环温而引起误动作。室内环温NTC损坏率不是很高。