1. 单片机直流电机怎么正反转
单片机控制直流电机正反转,最简单的方法是 两个I/O口 控制两个继电器(一组常开、常闭)的就可以,电机 两个极 接 两个继电器 的 动触点,两个继电器 的 常开点接+(电机电源),两个常闭点接-,就可以了。单片机控制接通一个继电器 是正转,控制接通另一个继电器 是反转,两个继电器都不接通(或者都接通)电机不转。
2. 单片机直流电机正反转调速
可以用单片机控制直流电机所转动的角度。AVR169单片机是RISC结构微控制器,具有高性能、低功耗、非易失性和CMOS技术等特点,AVR169还具有32个寄存器和丰富的指令集,带有四路8/9/10位PWM功能的16位定时器,8道的10位ADC,16KB可编程Flash,1KBSRAM,可以擦写10000次,接近1MIPS/MHZ的运行速度。
AS5040是世界上最小的10位多输出旋转磁性编码器, 是将现场传感霍尔(Hall)元件、A/D转换、数字信号处理和输出接口集成到单个芯片的系统级芯片(SoC),利用其包含的小磁体,可通过磁体的360度旋转探测1024个绝对位置,即每360度提供10位分辨率的1024 个绝对位置,同时提供了积分A/B、单通道和U-V-W交换等三种不同的增量输出模式,既可根据用户的特定要求设置,也可设置为脉宽调制(PWM)输出信号。PWM 数字输出所需外部元件最少,使用方便简单。本装置采用AS5040旋转编码器PWM_LSB端输出PWM脉冲,计算出电风扇摇头偏离初始位置的角度。控制电风扇摇头速度以及使其角度在一定范围内摇动,其工作原理为:把AS5040传感器装在电风扇摇头的转轴上,就能感应出电扇转过的角度与初始位置的夹角,计算出当前风扇摇头的速度,在下一个采样周期到来时,AS5040旋转编码器测得的速度信号及电机位置反馈信号通过AS5040接口反馈到AVR单片机169...
旋转编码器AS5040接口电路设计
AS5040旋转编码器把圆周分成1024份,当转离初始位置后,PWM_LSB端输出PWM脉冲。在0位置处,对应高电平宽度为1us,位置每加1,PWM高电平脉宽相应增加1us。通过对电机PWM的控制可以控制电机的转动,而AS5040旋转编码器随电机转轴转动,可以根据LSB端口输出脉冲计数得出电风扇摇头的速度变化,通过检测PWM_LSB输出脉冲可以得出此时刻转动的位置。AS5040引脚B_Dir_V可以直接检测出电机的正转和反转(输出1为顺时针,0为逆时针转动)。
3966 驱动接口电路设计
AVR 单片机169 输出的脉宽调制( PWM) 信号需经过功率放大才能驱动电机,调速控制系统采用的是3966 驱动芯片, 双极性工作方式是指在一个PWM 周期内电机电枢两端的电压呈正负变化,系统采用的双极性PWM控制,采用PI控制算法进行速度调节。驱动接口电路如图3 所示。单片机PWM引脚PF7直接接电机的ENABLE端,它控制着电机的转速的大小。
直流电机,大体上可分为四类:
第一类为有几相绕组的步进电机。这些步进电机,外加适当的序列脉冲,可使主轴转动一个精密的角度(通常在1.8°--7.5°之间)。只要施加合适的脉冲序列,电机可以按照人们的预定的速度或方向进行连续的转动。
步进电机用微处理器或专用步进电机驱动集成电路,很容易实现控制。例如常用的SAAl027或SAAl024专用步进电机控制电路。
步进电机广泛用于需要角度转动精确计量的地方。例如:机器人手臂的运动,高级字轮的字符选择,计算机驱动器的磁头控制,打印机的字头控制等,都要用到步进电机。
第二类为永磁式换流器直流电机,它的设计很简单,但使用极为广泛。当外加额定直流电压时,转速几乎相等。这类电机用于录音机、录相机、唱机或激光唱机等固定转速的机器或设备中。也用于变速范围很宽的驱动装置,例如:小型电钻、模型火车、电子玩具等。在这些应用中,它借助于电子控制电路的作用,使电机功能大大加强。
第三类是所谓的伺服电机,伺服电机是自动装置中的执行元件,它的最大特点是可控。在有控制信号时,伺服电机就转动,且转速大小正比于控制电压的大小,除去控制信号电压后,伺服电机就立即停止转动。伺服电机应用甚广,几乎所有的自动控制系统中都需要用到。例如测速电机,它的输出正比于电机的速度;或者齿轮盒驱动电位器机构,它的输出正比于电位器移动的位置.当这类电机与适当的功率控制反馈环配合时,它的速度可以与外部振荡器频率精确锁定,或与外部位移控制旋钮进行锁定。
3. 单片机直流电机怎么正反转的
这个模块是软件PWM模拟调速的,接电源5V,MOTOR-A的两个接口接马达,IN1和IN2接单片机P1.0和P1.1。P1.0和P1.1都是0停止转动,P1.0=1和P1.1=0正传,P1.0=0和P1.1=1反转
4. 单片机直流电机正反转程序
电机正反转
电机在日常使用中需要正反转,可以说电机的正反转在广泛使用。例如行车、木工用的电刨床、台钻、刻丝机、甩干机、车床等。
最初人们需要某种设备反转需要将电机导线拆换,但这种方法在实际使用中繁琐。后来,有一个聪明的人安装了两个闸刀通过切换闸刀来改变电机的正反转。过了一段时间出现了倒顺开关,这种接线比较简单且体积也减小。由于受到触点的限制,只能在小型的电机上得到广泛使用
伴随着接触器的诞生,电机的正反转电路也有了进一步的发展。可以更加灵活方便的控制电机的正反转,并且在电路中增加了保护电路—互锁和双重互锁。可以实现低电压和远距离频繁控制。
电机的正反转伴随着电子技术的发展,相继出现了PLC、单片机等也有了进一步的电路改善。并且在实际应用电路中增加了一些接近开关、光电开关等实现了双向自动控制,也为工业机器人的发展奠定了基础。
5. 单片机直流电机正反转控制
最简单的做法是选用stc单片机,用它的pwm引脚驱动h全桥,再由全桥驱动直流电机。
编程时用单片机内部的pwm寄存器,输出不同占空比的脉冲就可以实现电机调速。将pwm脉冲经其正负两个引脚送至全桥,就可以实现电机换向。
如果使用专用的pwm芯片,就可以不用正负两个pwm引脚,而是一个引脚做方向控制,另外一个引脚输出pwm脉冲,这种方案最为稳妥。
6. 单片机直流电机正反转仿真
我们可以做这样的实验,以24V直流电机为例,在电机两端接上24V的直流电源,电机会以满速转动,如果将24V电压降至2/3即16V,那么电机就会以满速的2/3转速运转。由此可知,想要调节电机的转速,只需要控制电机两端的电压即可。
当单片机输出高电平时,三极管导通,使得电机得电,从而满速运行;当单片机输出低电平时,三极管截止,电机两端没有电压,电机停止转动。
7. 单片机直流电机正反转实验报告
Proteus的51单片机控制步进电机,一般是控制其相序分配的顺逆从而控制正反转,一般而言,步进电机相序分配可以做成一个数组比如step[]={0x03,0x06,0x0c,0x09},这样来说可以假设P0口是步进电机控制口,那么可以按如下方式来控制:
while(1)
{
for(i=0;i
{
if(fx==1)P0=step[i]; //正向
else P0=step[3-i]; //反向
delay(x); //x大小决定电机速度。
8. 单片机直流电机正反转控制实训报告
改变直流电机的电流流向就可以控制直流电机的正反转
按题主的要求,需要设计一个通过继电器来切换电流流向的电路。我们需要选择单刀双制(SPDT)的继电器来设计电路。单刀双制(SPDT)的继电器在线圈没有工作时触点与其中一个引脚导通,当线圈通电工作时,触点会切换到另一边,与另外一个引脚导通。
01
行程开关加继电器控制直流电机的正反转电路设计
行程开关用于控制继电器的线圈的供电。继电器通过触点的切换导通来实现直流电机正反转
在下面的原理图中,两个行程开关都断开时,直流电机两个电极都与GND连接。是不会转动的。
02
行程开关加继电器控制直流电机的正反转工作原理分析
当上方的行程开关SW1导通时,上方的继电器K3会工作,继电器的触点会与另一个脚引导通,直流电机上方的电极会与VCC导通,电流按蓝色箭头方向流过,实现直流电机的正转。
当下方的行程开关SW2导通时,下方的继电器K4会工作,继电器的触点会与另一个脚引导通,直流电机下方的电极会与VCC导通,电流按红色箭头方向流过,实现直流电机的反转。
当两个行程开关都断开时,直流电机的两个电极都与GND连接,直流电机不会转动
当两个行程开关都闭合时,直流电机的两个电极都与VCC连接,直流电机不会转动
欢迎关注@电子产品设计方案,一起享受分享与学习的乐趣!关注我,成为朋友,一起交流一起学习
记得点赞和评论哦!非常感谢!
9. 单片机直流电机怎么正反转接线
如果是异步电机,任意交换其中两相就可以实现反转。如果是步进电机,它有3种类型:1永磁式步进电机;2反应式步进电机;3混合式步进电机。
永磁式步进电机转矩和体积都比较小,多用于家用电器,如空调,打印机等。
反应式步进电机常见的有三相反应式,步距角为1.5度。
混合式步进电机常见的有两相混合式,三相混合式,四相混合式,五相混合式等等。它们都必须使用步进电机驱动器。
对于三相三拍步进电机而言,它的三拍是A→B→C→A这样的循环,步进电机就正转。若是按A→C→B→A循环它就反转。
对于三相六拍步进电机而言,A→AB→B→BC→C→CA→A就是正转。反之,A→AC→C→CB→B→BA→A就是反转。
了解了三相步进电机的工作原理,我们只需在步进电机驱动器的信号端加入正,反向控制信号就能实现步进电机的正反转控制。
实现正反转控制信号的方法很多,常用的有PLC控制,单片机控制,微机控制等。