1. 同步发电机的损耗包括
1发电机定子一般不输入三相电压,而是输出三相电压,但是有一部分同步发电机作为调相机使用时,需要输入三相交流电压;
2发电机无功由励磁磁场来调节,而有功由原动机的输入功率来调节。所以发电机过励磁时,就发出电感性无功,而欠励磁时,就发出容性无功;
3异步电机本身是由电感线圈构成的,运行时线圈除了产生点动力外,还会产生很大电感效应,使得电机的功率因数降低。当电力系统中这些感性无功多了后,就会使损耗增大。所以发电机就需要发出感性无功来补偿,让电力系统中的功率因数回复到正常。
2. 同步发电机的损耗主要为铁损和铜损
单相同步发电机转子损耗主要是铜耗(转子励磁绕组的电阻损耗),转子铁耗较小可以忽略不计。如果电机是中频电机的话转子铁耗(转子铁芯中的磁滞、涡流损耗)就不能忽略。定子铜损和铁损,转子铜损,轴承机械损耗,风扇和转动部件风阻损耗等。
3. 异步电动机的损耗包括
三相异步电动机转速公式为: n=60f/p(1-s)从上式可见,改变供电频率 f 、电动机的极对数 p 及转差率 s 均可太到改变转速 的目的。从调速的本质来看, 不同的调速方式无非是改变交流电动机的同步转速 或不改变同步转两种。 在生产机械中广泛使用不改变同步转速的调速方法有绕线式电动机的转子串电 阻调速、转波调速、串级调速以及应用电磁转差离合器、液力偶合器、油膜离合 器等调速。 改变同步转速的有改变定子极对数的多速电动机, 改变定子电压、 频 率的变频调速有能无换向电动机调速等。 从调速时的能耗观点来看, 有高效调速方法与低效调速方法两种: 高效调速指时 转差率不变, 因此无转差损耗, 如多速电动机、 变频调速以及能将转差损耗回收 的调速方法(如串级调速等) 。有转差损耗的调速方法属低效调速,如转子串电 阻调速方法, 能量就损耗在转子回路中; 电磁离合器的调速方法, 能量损耗在离 合器线圈中; 液力偶合器调速, 能量损耗在液力偶合器的油中。 一般来说转差损 耗随调速范围扩大而增加,如果调速范围不大,能量损耗是很小的。 一、变极对数调速方法这种调速方法是用改变定子绕组的接线方式来改变笼型电动机定子极对数达到 调速目的,特点如下: 具有较硬的机械特性,稳定性良好; 无转差损耗,效率高; 接线简单、控制方便、价格低; 有级调速,级差较大,不能获得平滑调速; 可以与调压调速、电磁转差离合器配合使用,获得较高效率的平滑调速特性。 本方法适用于不需要无级调速的生产机械, 如金属切削机床、 升降机、起重设备、 风机、水泵等。 二、变频调速方法变频调速是改变电动机定子电源的频率, 从而改变其同步转速的调速方法。 变频调速系统主 要设备是提供变频电源的变频器, 变频器可分成交流-直流-交流变频器和交流-交流变频 器两大类,目前国内大都使用交-直-交变频器。其特点: 效率高,调速过程中没有附加损耗; 应用范围广,可用于笼型异步电动机; 调速范围大,特性硬,精度高; 技术复杂,造价高,维护检修困难。 本方法适用于要求精度高、调速性能较好场合。 三、串级调速方法串级调速是指绕线式电动机转子回路中串入可调节的附加电势来改变电动机的转差, 达到调 速的目的。 大部分转差功率被串入的附加电势所吸收, 再利用产生附加的装置, 把吸收的转 差功率返回电网或转换能量加以利用。 根据转差功率吸收利用方式, 串级调速可分为电机串 级调速、机械串级调速及晶闸管串级调速形式,多采用晶闸管串级调速,其特点为: 可将调速过程中的转差损耗回馈到电网或生产机械上,效率较高; 装置容量与调速范围成正比,投资省,适用于调速范围在额定转速 70%- 90%的生产机械 上; 调速装置故障时可以切换至全速运行,避免停产; 晶闸管串级调速功率因数偏低,谐波影响较大。 本方法适合于风机、水泵及轧钢机、矿井提升机、挤压机上使用。 四、绕线式电动机转子串电阻调速方法绕线式异步电动机转子串入附加电阻, 使电动机的转差率加大, 电动机在较低的转速下运行。 串入的电阻越大,电动机的转速越低。此方法设备简单, 控制方便,但转差功率以发热的形 式消耗在电阻上。属有级调速,机械特性较软。 五、定子调压调速方法当改变电动机的定子电压时, 可以得到一组不同的机械特性曲线, 从而获得不同转速。 由于 电动机的转矩与电压平方成正比, 因此最大转矩下降很多, 其调速范围较小, 使一般笼型电 动机难以应用。 为了扩大调速范围, 调压调速应采用转子电阻值大的笼型电动机, 如专供调 压调速用的力矩电动机, 或者在绕线式电动机上串联频敏电阻。 为了扩大稳定运行范围, 当 调速在 2:1 以上的场合应采用反馈控制以达到自动调节转速目的。 调压调速的主要装置是一个能提供电压变化的电源,目前常用的调压方式有串联饱和电抗 器、自耦变压器以及晶闸管调压等几种。晶闸管调压方式为最佳。调压调速的特点: 调压调速线路简单,易实现自动控制; 调压过程中转差功率以发热形式消耗在转子电阻中,效率较低。 调压调速一般适用于 100KW 以下的生产机械。 六、电磁调速电动机调速方法电磁调速电动机由笼型电动机、 电磁转差离合器和直流励磁电源(控制器) 三部分组成。直 流励磁电源功率较小, 通常由单相半波或全波晶闸管整流器组成, 改变晶闸管的导通角, 可 以改变励磁电流的大小。 电磁转差离合器由电枢、 磁极和励磁绕组三部分组成。 电枢和后者没有机械联系, 都能自由 转动。 电枢与电动机转子同轴联接称主动部分, 由电动机带动; 磁极用联轴节与负载轴对接 称从动部分。 当电枢与磁极均为静止时, 如励磁绕组通以直流, 则沿气隙圆周表面将形成若 干对 N、S 极性交替的磁极,其磁通经过电枢。当电枢随拖动电动机旋转时,由于电枢与磁 极间相对运动, 因而使电枢感应产生涡流, 此涡流与磁通相互作用产生转矩, 带动有磁极的 转子按同一方向旋转,但其转速恒低于电枢的转速 N1,这是一种转差调速方式,变动转差 离合器的直流励磁电流,便可改变离合器的输出转矩和转速。电磁调速电动机的调速特点: 装置结构及控制线路简单、运行可靠、维修方便; 调速平滑、无级调速; 对电网无谐影响; 速度失大、效率低。 本方法适用于中、小功率,要求平滑动、短时低速运行的生产机械。 七、液力耦合器调速方法液力耦合器是一种液力传动装置, 一般由泵轮和涡轮组成, 它们统称工作轮, 放在密封壳体 中。壳中充入一定量的工作液体, 当泵轮在原动机带动下旋转时, 处于其中的液体受叶片推 动而旋转,在离心力作用下沿着泵轮外环进入涡轮时,就在同一转向上给涡轮叶片以推力, 使其带动生产机械运转。 液力耦合器的动力转输能力与壳内相对充液量的大小是一致的。 在 工作过程中,改变充液率就可以改变耦合器的涡轮转速,作到无级调速,其特点为: 功率适应范围大,可满足从几十千瓦至数千千瓦不同功率的需要; 结构简单,工作可靠,使用及维修方便,且造价低; 尺寸小,能容大; 控制调节方便,容易实现自动控制。 本方法适用于风机、水泵的调速。
4. 同步发电机的损耗包括什么
三相电动机转子银损耗计算:
1.异步电动机的损耗包括铁耗PFe、定子铜耗PCu1、转子铜耗PCu2、机械损耗Pj和附加损耗Pfj,而Pfj又包括风摩损耗Pf和杂散损耗Ps。异步电动机转轴上输出的功率P2总是小于从电源输入的电功率P1
而产生的损耗功率△P=P1-P2。
2.直流电动机(并励电动机)总损∑ΔP=PCua+PCub+PCul+Pj+PFe+Pfj式中 PCua——电枢回路铜耗(kW);PCub——电刷接触损耗(kW);PCul——励磁回路铜耗(kW);Pj——机械损耗(kW);PFe、Pfj——铁耗与附加损耗(kW)。
3.同步电动机损耗、输出功率和效率的测算方法和异步电动机基本相同。区别在于同步电动机还应计入励磁机引起的励磁损耗,而不计转子损耗。
5. 同步电机的什么包括机械损耗附加损耗电枢铁损耗
不变损耗和可变损耗相等时,变压器的效率具有最高值。变压器可变消耗等于不变消耗时它就没有消耗了,因为全用在正道上了当然就高。
可变损耗:一般指铜损,可用I^2*R计算;不变损耗:电机的摩擦损耗和电枢内的磁滞损耗和涡流损耗,也就是铁损,用Psum表示;电机的输入效率:UI电机的效率=1- (I^2*R+Psum)/UI,要想效率最大,对I求导,可得出,效率最大时,应该是铜损铁损相等情况。变压器(Transformer)是利用电磁感应的原理来改变交流电压的装置,主要构件是初级线圈、次级线圈和铁芯(磁芯)。主要功能有:电压变换、电流变换、阻抗变换、隔离、稳压(磁饱和变压器)等。
按用途可以分为:电力变压器和特殊变压器(电炉变、整流变、工频试验变压器、调压器、矿用变、音频变压器、中频变压器、高频变压器、冲击变压器、仪用变压器、电子变压器、电抗器、互感器等)。电路符号常用T当作编号的开头.例: T01, T201等。
6. 同步电机的损耗包括哪些
过负荷,负载过大或机械卡涩造成的电流增大引起发热,曳引机内部匝间故障造成的发热,曳引机内部工艺质量不好造成。
永磁同步电机的各种损耗是电机发热的热源,这些损耗包括基本铜耗、基本铁耗、机械损耗和附加损耗等。
永磁同步电机的基本铜耗是指定导体流过电流产生的电阻损耗。异步电动机有定、转子绕组中交流电流引起的铜耗,同步电动机有电枢绕组交流电流引起的损耗和转子励磁绕组直流电流铜耗。
永磁同步电机的基本铁耗,是指电机定、转子铁芯的轭部里,通过交变磁通引起铁芯损耗,它包括磁滞损耗与涡流损耗两个部分。
永磁同步电机的机械损耗是指包括轴承、电刷的摩擦损耗,以及风扇消耗的损耗和转子旋转时冷却介质摩擦的通风损耗等。通风损耗与冷却介质有关,氢气重量轻、传热能力强,用氢气作为冷却介质能大大降低通风损耗。机械损耗主要与转速有关,高速电机中机械损耗占总损耗比例较高。
永磁同步电机的附加损耗又称杂散损耗,是指由于谐波磁动势、漏磁通引起的附加铁损耗和附加铜损耗,具体有漏磁通在定子端部周围,端盖等金属构件中引起的铁损耗,定、转子磁动势高次谐波分别在定、转子表面感应的高频涡流引起的铁损耗,定、转子齿槽的磁阻不同引起磁通变化产生脉动损耗。
绕组导体中由于集肤效应使电流分布不均匀而引起的额外铜损耗等。这些附加损耗计算比较复杂,且数值相对比较小,一般根据经验,按不同电机形式给出估算值,为额定功率的0.5%~2.5% 。