led驱动电源w(LED驱动电源外文文献)

海潮机械 2023-01-07 07:01 编辑:admin 252阅读

1. LED驱动电源外文文献

《光电技术应用》是2017年社会科学文献出版社出版的一本书籍,书籍的作者是沈亚强。

本教材在内容选取上精简理论知识,注重和强化实际动手操作环节。以"理论够用, 技能强化"为原则, 以典型工作任务为载体,结合学生的认知规律,合理安排理论知识、技能及拓展环节,编写出针对性强、可操作性强,通俗易懂,以加强课程内容与生产实际需求,关注与培养学生的学习兴趣和经验的联系,注重选择专业与职业必备的基础知识和技能为新编教材的目的。

本教材的编写采用项目化的任务为驱动的教学方式。教材以光电器件的基本原理为基础,以面向市场应用的项目为载体,并将项目划分为若干个学习性工作任务来完成。

全书分为10个项目,每个项目以典型的光电器件为核心,内容涉及LED照明、太阳能电池、光敏管、CCD、光纤通信、光纤传感及光电仪器设计等,并项目为核心,进行知识拓展与应用拓展,进一步拓宽学生的知识面及面向市场的产品设计能力。

教材在项目的编排上按照由简到繁、由易到难,由局部到整体的顺序. 本书可作为光学、物理电子学以及光学工程等专业本科生的专业基础教材,也可供从事与光学学科相关专业学习和研究的师生及科技人员参考。

2. led驱动电路

自制简单Led灯驱动器,采用阻容降压,二极管桥式整流,电容滤波,电阻限流。这些器件选用值应以要供电的灯板电压、电流值计算确定。生活中有好多适配器(充电器)选电压稍高(接近灯板电压)的,在输出端串一个电阻限流即可当Led灯的驱动器。像床头小灯,手机充电器可。大点的像闲置6Ⅴ、9V、12V的各种小家电、路由器直流电源都可串个适当电阻为Ld灯供电。

3. LED参考文献

展开全部

简易频率计

一、设计任务与要求

1.设计制作一个简易频率测量电路,实现数码显示。

2.测量范围:10Hz~99.99KHz

3.测量精度: 10Hz。

4. 输入信号幅值:20mV~5V。

5. 显示方式:4位LED数码。

二、方案设计与论证

频率计是用来测量正弦信号、矩形信号、三角形信号等波形工作频率的仪器,根据频率的概念是单位时间里脉冲的个数,要测被测波形的频率,则须测被测波形中1S里有多少个脉冲,所以,如果用一个定时时间1S控制一个闸门电路,在时间1S内闸门打开,让被测信号通过而进入计数译码器电路,即可得到被测信号的频率fx。

任务要求分析:

频率计的测量范围要求为10Hz~99.99KHz,且精度为10Hz,所以有用4片10进制的计数器构成1000进制对输入的被测脉冲进行计数;要求输入信号的幅值为20mV~5V,所以要经过衰减与放大电路进行检查被测脉冲的幅值;由于被测的波形是各种不同的波,而后面的闸门或计数电路要求被测的信号必须是矩形波,所以还需要波形整形电路;频率计的输出显示要经过锁存器进行稳定再通过4位LED数码管进行显示。

经过上述分析,频率计电路设计的各个模块如下图:

方案一:

根据上述分析,频率计定时时间1s可以通过和电容、电阻构成的产生1000Hz的脉冲,再进行分频成1Hz即周期为1s的脉冲,再通过把脉冲正常高电平为1s;放大整形电路通过与非门、非门和二极管组成;闸门电路用一个与门,只有在定时脉冲为高电平时输入信号才能通过与门进入计数电路计数;计数电路可以通过5个十进制的计数器组成,计数器再将计的脉冲个数通过锁存器进行稳定最后通过4个LED数码显像管显示出来。

方案二:

频率计定时时间1s可以直接通过和电容、电阻构成的产生1Hz的脉冲,再通过把脉冲正常高电平为1s;放大整形电路可以直接用一个具有放大功能的施密特触发器对输入的信号进行整形放大,其他模块的电路和方案一的相同。

通过对两种方案的分析,为了减少总的电路的延迟时间,提高测量精确度,所以选择元件少的第二种方案。

三、单元与参数计算

用555_VIRTUAL定时器和电容、电阻组成产生1Hz的脉冲,根据书中的振荡周期 : T=(R1+R2)C*ln2 取C=10uF,R1=2KΩ,T=1s,计算得:R2=70.43KΩ,再通过T_FF把脉冲正常高电平为1s的脉冲,元件的连接如下:

经示波器仿真,产生的脉冲的高电平约为1S。

放大整形电路:

用一个74HC14D_4V的含放大功能的施密特触发器对输入脉冲进行放大整形,把输入信号放大整形成4V的矩形脉冲,其放大整形效果如下图:

闸门电路:

用一个与门74LS08作为脉冲能否通过的闸门,当定时信号Q为高电平时,闸门打开,输入信号进入计数电路进行计数,否则,其不能通过闸门。

计数电路:

计数电路用5(4)片74192N计数器组成100000(10000)进制的计数电路,74192N是上升沿有效的,来一个脉冲上升沿,电路记一次数,所以计数的范围为0~99999(5000)。但计数1S后要对计数器进行清零或置零,在这里用清零端,高电平有效,当计数1S后,Q为低电平,Q’为高电平,所以用Q’作为清零信号,接线图如下:

锁存显示电路:

当计数电路计数结束时,要把计得脉冲数锁存通过数码显示管稳定显示出来。锁存器用2片74ls273,时钟也是上升沿有效,当Q为下降沿时,Q’恰好是上升沿,所以用Q’作为锁存器的时钟,恰能在计数结束时把脉冲数锁存显示,电路的接线图如下:

四、总电路工作原理及元器件清单

1.总原理图

2.电路完整工作过程描述(总体工作原理)

555组成的多谐振荡器产生1Hz的脉冲,经过T触发器整形成高电平时间为1S的脉冲,高电平脉冲打开闸门74LS08N,让经施密特触发器74HC14D放大整形的被测脉冲通过,进入计数器进行1S的计数。当计数结束时,T触发器的Q为下降沿,Q’刚好为上升沿,触发锁存器工作,让计数器输出的信号通过锁存器锁存显示,同时,高电平的Q’信号对计数电路进行清零,此后,电路将循环上述过程,但对于同一个被测信号,在误差的允许范围内,LED上所显示的数字是稳定的。

3.元件清单

元件序号 型号 主要参数 数量 备注

1 74192 5 加法计数器

2 74LS273 2 锁存器

3 DCD_HEX 4 LED显示器

4 555_VIRTUAL 1 定时器

5 T_FF 1 T触发器

6 CAPACITOR_RATED 电容10Uf、额定电压50V 1 电容

7 CAPACITOR_RATED 电容10Nf、额定电压10V 1 电容

8 RES 阻值2KΩ 1

9 RES 阻值 1

10 74LS08 1 双输入与门

11 74HC14D_4V 1 施密特触发器,放大电压4V

12 AC_VOLTAGE 1 可调的正弦脉冲信号

五、仿真调试与分析

把各个模块组合起来后,进行仿真调试以达到任务要求。

① 在信号输入端输入10Hz的交流脉冲,仿真,结果如下:

说明仿真的结果准确

② 在信号输入端输入300Hz的交流脉冲,仿真,结果如下:

仿真结果准确

③ 在信号输入端输入3KHz正弦脉冲,仿真,结果如下:

④输入20KHz的正弦脉冲,仿真,结果如下:

仿真结果结果与实际的结果相差20Hz,这说明频率越高,误差越大。经分析,这是由于各个元器件存在着延迟时间,1S的脉冲,经过各个元器件的延迟,计数时间会大于1s,频率越高,误差越大,所以计数的时间要稍微小于1S,调小时基电路的R3为70.23KΩ,仿真,结果如下:

还是存在误差,经过多次调节R3仿真,最后确定R3为70.06 KΩ时对于各个频率的测试都比较准确,20KHz时仿真结果如下:

所以R3为70.06KΩ是测得的各个频率值都比较准确,且电路设计都符合测任务要求。

六、结论与心得

在这次课程设计的过程中,我收获不少。首先,我学会了把一个电路分成模块去设计,最后再整合,这样可以把一个复杂的电路简单化了,并且这样方便与调试与修改;其次,设计有助了我去自学一些元器件的功能,去运用它;再次,我也初步会用multisim软件设计电路;最后,这次课程设计也提高了我查找问题、思考问题和解决问题的能力,还锻炼了我的耐性。

在这次课程设计中也遇到了很多问题,首先,是对元器件了解不多,对于要实现某种功能不知道用那一种元件,所以问同学,上网收索,再了解这种元件的逻辑功能,学会去用它;其次,不大会用电路设计软件,一开始用EWB软件设计,对模块仿真可以,但整合整个原理图仿真却不行,通过示波器观察输出波形发现脉冲走了一小段却停止了,以为是电路有问题,就查找了很多遍才找出问题,原来在那个软件仿真时是不允许存在两个信号,所以重新用multisim设计,才可以;最后,在用multisim仿真高频率时仿真速度极慢,所以调整了软件的仿真最大步长,但问题又出现了,信号紊乱,数码管显示数字不一,然后就猜想会不会是元件的问题,太高频率元件来不及反应就输出结果,但上网寻找答案,原来是软件的仿真步长会影响仿真的精确度,所以,某一范围的频率仿真,要用相应的最大仿真步长。

这个题目的设计花了自己不少心血,有时甚至一整天在弄,但是当自己成功地设计出电路时所获得的那一份成就感是无法表达的,所以整个电路的设计过程充满着苦恼与乐趣。

七、参考文献

[1] 阎石 《数字电子技术基本教程》第一版 ,清华大学出版社,2007.08

4. led驱动电源应用

1、由于LED是特性敏感的半导体器件,又具有负温度特性,LED驱动电源(也叫驱动器)就是在应用过程中对其进行稳定工作状态的保护。

2、LED器件对驱动电源的要求近乎于苛刻,LED不像普通的白炽灯泡,可以直接连接220V的交流市电。LED是低电压驱动,必须要设计复杂的变换电路,不同用途的LED灯,要配备不同的电源适配器。

设计一款好的电源必须要综合考虑效率转换、有效功率、恒流精度、电源寿命、电磁兼容这些因数,因为电源在整个灯具中的作用就好比像人的心脏一样重要。

5. LED电源驱动ic

是不一样的。

LED照明芯片是一颗发光二极管,也就是我们平常说的LED或LED灯珠。

LED驱动芯片,是一颗电源上的驱动IC,来驱动LED的,两者是完全不同的。

led由于是特性敏感的半导体器件,又具有负温度特性,因而在应用过程中需要对其进行稳定工作状态和保护,从而产生了驱动的概念。

LED器件对驱动电源的要求近乎于苛刻,LED不像普通的白炽灯泡,可以直接连接220V的交流市电。

6. led光源驱动

驱动器一侧两个一样颜色的线接220V交流电,另一侧黑线接LED灯负极,红色或白色线接正极,不过一般LED灯驱动输出都是有插头的,插反了是插不上的!

7. led驱动输出

由于LED是非线性器件,自身没有限流能力,因此这里用了一个恒流电源(300mA ± 5%)来保证LED的工作电流稳定。

恒流电源不是一种常见的电源(常见的电源是恒压电源,就是输出电压稳定,输出电流全看负载大小),恒流电源的特点是电压是变动的,但电流是稳定的。例如你这只电源,无论你串联接入几只LED(不多于7只),输出电流总是300mA 。因此这个电源不能用常规电源代换。