高频变压器(高频变压器原理图)

海潮机械 2023-01-03 16:18 编辑:admin 137阅读

1. 高频变压器原理图

高频变压器和低频变压器的区别:

1、高频变压器与低频变压器在原理上没区分。

2、高频变压器与低频变压器在高频及低频的频率不同。

3、两种变压器所用的铁芯不同:

低频变压器一般用高导磁率的硅钢片;

高频变压器则用高频铁氧体磁芯。

4、高频变压器与低频变压器线圈的数量不同:

同样的电感,高频变压器随着频率的升高感抗慢慢增大,为了顺应高频传道输送,变压器必须以较少的圈数顺应该频率,甚至绕成空心线圈。微波的传道输送,有的绕成3/4圈或1/2圈等。

普通变压器因为是工频,必须靠铁芯发生的磁通进行电压变换,因为磁通不能过饱,必须按每一伏/匝绕制 线圈,才能使其在最好状态,而高频变压器是以其辐射能力感应到次级的。

2. 高频变压器原理图脚位NC表示

电路中NC一般是"not connect"的缩写,表示此处不贴装元件,这个位置可能是样品调试的时候用的。或者NC标注在继电器的引脚上,表示此脚为常闭脚"Normally closed"

3. 高频电子变压器原理图

D-单相;S-三相;J-油浸自冷; L-绕组为铝线;Z-有载调压;SC-三相环氧树脂浇注;

SG-三相干式自冷;JMB-局部照明变压器;YD-试验用单相变压器;BF(C) -控制变压器;(C为C型铁芯结构) ;DDG-单相干式低压大电流变压器。

注:电力变压器后面的数字部分:斜线左边表示额定容量(千伏安);斜线右边表示一次侧额定电压(千伏)。

主要功能有:电压变换、电流变换、阻抗变换、隔离、稳压(磁饱和变压器)等。

按用途可以分为:电力变压器和特殊变压器(电炉变、整流变、工频试验变压器、调压器、矿用变、音频变压器、中频变压器、高频变压器、冲击变压器、仪用变压器、电子变压器、电抗器、互感器等)。

电路符号常用T当作编号的开头.例: T01, T201等。

变压器是利用电磁感应原理制成的静止用电器。当变压器的原线圈接在交流电源上时,铁心中便产生交变磁通,交变磁通用φ表示。原、副线圈中的φ是相同的,φ也是简谐函数,表为φ=φmsinωt。由法拉第电磁感应定律可知,原、副线圈中的感应电动势为e1=-N1dφ/dt、e2=-N2dφ/dt。

式中N1、N2为原、副线圈的匝数。由图可知U1=-e1,U2=e2(原线圈物理量用下角标1表示,副线圈物理量用下角标2表示),其复有效值为U1=-E1=jN1ωΦ、U2=E2=-jN2ωΦ,令k=N1/N2,称变压器的变比。

由上式可得U1/ U2=-N1/N2=-k,即变压器原、副线圈电压有效值之比,等于其匝数比而且原、副线圈电压的位相差为π。

进而得出:U1/U2=N1/N2

在空载电流可以忽略的情况下,有I1/ I2=-N2/N1,即原、副线圈电流有效值大小与其匝数成反比,且相位差π。

进而可得:I1/ I2=N2/N1

理想变压器原、副线圈的功率相等P1=P2。说明理想变压器本身无功率损耗。实际变压器总存在损耗,其效率为η=P2/P1。电力变压器的效率很高,可达90%以上。

4. 高频变压器原理图解析

高频变压器是作为开关电源最主要的组成局部。开关电源一般采用半桥式功率转换电路,工作时两个开关三极管轮流导通来产生100kHz 高频脉冲波,然后通过高频变压器进行降压,输出低电压的交流电,高频变压器各个绕组线圈的匝数比例则决定了输出电压的多少。

5. 高频变压器工作原理详解

高频电路中的无源组件或无源网络主要有高频振荡(谐振)回路、高频变压器、谐振器与滤波器等,它们完成信号的传输、频率选择及阻抗变换等功能。

高频振荡回路是高频电路中应用最广的无源网络,也是构成高频放大器、振荡器以及各种滤波器的主要部件,在电路中完成阻抗变换、信号选择等任务,并可直接作为负载使用。

振荡回路是由电感和电容组成。只有一个回路的振荡回路称为简单振荡回路或单振荡回路,分为串联谐振回路或并联谐振回路。

不同高频电路的应用

1、高频放大电路。

作用:用来放大高频信号的

2、高通滤波器。

作用:可以让高频信号通过,阻止低频信号通过的电路

3、高频振荡器。

作用:可以产生高频信号或频率的电路

4、高频发射电路。

作用:无线电通讯用来发射一个波段通讯信号的电路

5、高频吸收电路。

作用:用来吸收某一高频段信号或频率的电路

6. 高频变压器原理图画法

变压器是变换交流电压、电流和阻抗的器件,当初级线圈中通有交流电流时,铁芯(或磁芯)中便产生交流磁通,使次级线圈中感应出电压(或电流)。

变压器由铁芯(或磁芯)和线圈组成,线圈有两个或两个以上的绕组,其中接电源的绕组叫初级线圈,其余的绕组叫次级线圈。

在高频变压器设计时,变压器的漏感和分布电容必须减至最小,因为开关电源中高频变压器传输的是高频脉冲方波信号。

7. 高频变压器工作原理图

原理:  1.工频整流滤波

  这三项380V AC(50Hz)交流电通过整流桥获得直流电压,然后通过充电电感器L和滤波电容器C输出直流电压(约530V)。

  2.谐振逆变电路

  DC电压经由IGBT逆变器桥,谐振电容器Cs和谐振电感Ls形成高频谐振逆变器电路,并且获取高频(20至50kHz)的振荡波形。

  3.高频升压整流电路

  逆变器的波形由高频变压器升压,由高频整流桥整流,最后将所需的波形输出到静电收集器。

8. 高频变压器原理图讲解

整流变压器和普通变压器的原理相同。变压器是根据电磁感应原理制成的一种变换交流电压的设备。变压器一般有初线和次级两个互相独立绕组,这两个绕组共用一个铁芯.变压器初级绕组接通交流电源,在绕组内流过交变电流产生磁势,于是在闭合铁芯中就有交变磁通。

初、次级绕组切割磁力线,在次级就能感应出相同频率的交流电。

变压器的初,次级绕组的匝数比等于电压比。

如一个变压器的初级绕组是440匝,次级是220匝。初级输入电压为220V,在变压器的次就能得到110V的输出电压。

有的变压器可以有多个次级绕组和抽头,这样就可以获得多个输出电压了。

9. 焊机高频变压器原理图

1、在一个圈组上面缠绕10~20匝,但是不要超过20,其中增大线径就可以了,电焊机就是一个实体实用的变压器,只不过材料有所不同。

2、变压器(Transformer)是利用电磁感应的原理来改变交流电压的装置,主要构件是初级线圈、次级线圈和铁芯(磁芯)。主要功能有:电压变换、电流变换、阻抗变换、隔离、稳压(磁饱和变压器)等。按用途可以分为:电力变压器和特殊变压器(电炉变、整流变、工频试验变压器、调压器、矿用变、音频变压器、中频变压器、高频变压器、冲击变压器、仪用变压器、电子变压器、电抗器、互感器等)。电路符号常用T当作编号的开头.例: T01, T201等。

3、电焊机是利用正负两极在瞬间短路时产生的高温电弧来熔化电焊条上的焊料和被焊材料,使被接触物相结合的目的。其结构十分简单,就是一个大功率的变压器。电焊机一般按输出电源种类可分为两种,一种是交流电源、一种是直流电。他们利用电感的原理,电感量在接通和断开时会产生巨大的电压变化,利用正负两极在瞬间短路时产生的高压电弧来熔化电焊条上的焊料,来使它们达到原子结合的目的。

10. 高频变压器原理图片

高频交流电源的基本工作原理及结构:把外部提供的50Hz的交流电直接整流成高压直流电,然后采用功率器件MOS管或IGBT经过电容和电感组成的LC震荡电路将直流电逆变为高频交流电,高频交流电通过高频变压器变成低压高频电源输出。

高频感应加热电源通常采用逆变调功方式,逆变调功可以分为三类:

(1)频率调制(PFM)。频率调制的方法就是调节逆变开关管的开关频率,从而改变输出阻抗来达到调节输出功率的目的。这种调功方式比较常用,优点是调节方法比较简单,而且较容易实现软开关。但是,功率调节线性不好,而且调节范围不大。

(2)脉冲密度调制(PDM)。PDM就是通过控制脉冲密度,从而控制输出平均功率,来达到控制功率的目的。这种控制方法较容易实现,但是由于是问断加热,所以加热效果不好。

(3)脉冲宽度调制(PWM)。PWM通过调节逆变开关管的一个周期内导通时间来调节输出功率。这种方法等同于普通开关电源的调制方法,调节线性好,范围大,但是不容易实现软开关。

基本原则

高频电源选择主要考虑以下几方面:

(1)结构形式。根据焊接设备的情况选择单体式或分体式。

(2)加热功率。根据加热工件的大小确定功率,一般锯片、薄壁钻焊接的功率为15~25kW,滚筒、磨盘焊接选择功率36~46kW。

(3)振荡频率。振荡频率与焊接效率及深度有关,锯片薄壁钻焊接频率为15~50kHz。硬质合金等导磁率低的材料焊接频率为150~250kHz。

(4)感应圈的匝数范围。有些电源可以单匝或多匝,有些电源必需是多匝。用户可以根据高频电源输出变压器、加热工件的尺寸、加热功率等因素综合考虑确定感应圈的结构。一般多匝效率高,频率会低些。

(5)测温与控温。随着焊接质量要求的不断提高,要求在焊接过程中控制焊接温度,一般采用红外线测温专用的温度控制器控制恒定的温度。

学科

主要应用于电子结构学科。