1. 风电全功率变流器
风力发电用不着逆变器,只有直流电才需要逆变器转换成交流电。
2. 风电全功率变流器接线图
风电变流器,是双馈风力发电机中,加在转子侧的励磁装置。 其主要功能是在转子转速n变化时,通过变流器控制励磁的幅值、相位、频率等,使定子侧能向电网输入恒频电。 包括功率模块、控制模块、并网模块。
变流器采用三相电压型交-直-交双向变流器技术,核心控制采用具有快速浮点运算能力的“双DSP的全数字化控制器”;在发电机的转子侧变流器实现定子磁场定向矢量控制策略,电网侧变流器实现电网电压定向矢量控制策略;系统具有输入输出功率因数可调、自动软并网和最大功率点跟踪控制功能。 功率模块采用高开关频率的IGBT功率器件,保证良好的输出波形。 这种整流逆变装置具有结构简单、谐波含量少等优点,可以明显地改善双馈异步发电机的运行状态和输出电能质量。 这种电压型交-直-交变流器的双馈异步发电机励磁控制系统,实现了基于风机最大功率点跟踪的发电机有功和无功的解耦控制,是目前双馈异步风力发电机组的一个代表方向。
3. 风电全功率变流器重量
68000va高频逆变器的输出电压是3000V。 高频逆变器通过高频DC/AC变换技术,将低压直流电逆变为高频低压交流电,然后经过高频变压器升压后,再经过高频整流滤波电路整流成通常均在300V以上的高压直流电,最后通过工频逆变电路得到220V工频交流电供负载使用。高频逆变器的优缺点:高频逆变器采用的是体积小,重量轻的高频磁芯材料,从而大大提高了电路的功率密度,使得逆变电源的空载损耗很小,逆变效率得到了提高。通常高频逆变器峰值转换效率达到90%以上。但是其也有显著缺点,高频逆变器不能接满负荷的感性负载,并且过载能力差。 (1)方波逆变器 方波逆变器输出的交流电压波形为方波。此类逆变器所使用的逆变线路也不完全相同,但共同的特点是线路比较简单,使用的功率开关管数量很少。设计功率一般在百瓦至千瓦之间。方波逆变器的优点是:线路简单、价格便宜、维修方便。缺点是由于方波电压中含有大量高次谐波,在带有铁心电感或变压器的负载用电器中将产生附加损耗,对收音机和某些通讯设备有干扰。此外,这类逆变器还有调压范围不够宽,保护功能不够完善,噪声比较大等缺点。 使用范围:应急用电的场所,车船、商场、野外。 性能特点为: 1)工频变压器体积、重量大,推挽式原边绕组利用率低,桥式绕组利用率高; 2)输出四阶交流滤波器体积、重量大,位于功率通道的Lf1、Cf1有较大的损耗; 3)对于电网电压和负载的波动,系统动态响应特性差; 4)变压器和输出滤波电感产生的音频噪音大; 5)推挽式电路拓扑简洁,功率开关电压应力高(2Ui),适用于低输入电压逆变场合。桥式电路功率开关数多,开关电压应力低(Ui),适用于高输入电压逆变场合。 (2)阶梯波逆变器 此类逆变器输出的交流电压波形为阶梯波,逆变器实现阶梯波输出也有多种不同线路,输出波形的阶梯数目差别很大。阶梯波逆变器的优点是,输出波形比方波有明显改善,高次谐波含量减少,当阶梯达到17个以上时输出波形可实现准正弦波。当采用无变压器输出时,整机效率很高。缺点是,阶梯波叠加线路使用的功率开关管较多,其中有些线路形式还要求有多组直流电源输入。这给太阳电池方阵的分组与接线和蓄电池的均衡充电均带来麻烦。此外,阶梯波电压对收音机和某些通讯设备仍有一些高频干扰。
4. 风电全功率变流器工作原理
牵引变流器是列车关键部件之一,安装在列车动车底部,其主要功能是转换直流制和交流制间的电能量,把来自接触网上的1500 V直流电转换为0~1150 V的三相交流电,通过调压调频控制实现对交流牵引电动机起动、制动、调速控制。随着电力电子技术发展,牵引变流器在轨道车辆中的应用也在不断地进步与发展。其中IGBT、GTO、IPM器件属电压驱动的全控型开关器件,脉冲开关频率高、性能好、损耗小,且自保护能力也强。为此,世界上无论是干线铁路还是城市轨道的电动车辆的电气系统中均采用IGB7F、GTO、IPM模块来构成。
牵引变流器主要由供电环节,直流连接环节、PWM逆变器、电阻制动电路、制动电阻组成。功率模块(IGBT模块)是构成变流器的核心部件,PWM逆变器是由U相、V相、W相3个功率模块构成。每个模块由上下桥臂的两组IGBT元件和反并联二极管构成。
5. 风电全功率变流器原理
双馈式风力发电机是目前应用最为广泛的风力发电机,由定子绕组直连定频三相电网的绕线型异步发电机和安装在转子绕组上的双向背靠背IGBT电压源变流器组成。工作原理:双馈感应发电机由定子绕组直连定频三相电网的绕线型感应发电机和安装在转子绕组上的双向背靠背IGBT电压源变流器组成。”双馈“的含义是定子电压由电网提供,转子电压由变流器提供。该系统允许在限定的大范围内变速运行。通过注入变流器的转子电流,变流器对机械频率和电频率之差进行补偿。
在正常运行和故障期间,发电机的运转状态由变流器及其控制器管理。变流器由两部分组成:转子侧变流器和电网侧变流器,它们是彼此独立控制的。电力电子变流器的主要原理是转子侧变流器通过控制转子电流分量控制有功功率和无功功率,而电网侧变流器控制直流母线电压并确保变流器运行在统一功率因数(即零无功功率)。
功率是馈入转子还是从转子提取取决于传动链的运行条件:在超同步状态,功率从转子通过变流器馈入电网;而在欠同步状态,功率反方向传送。
在两种情况(超同步和欠同步)下,定子都向电网馈电。
6. 风电全功率变流器用的什么电机
早期的风电机组采用的是恒定转速/恒定频率的发电系统。也就是说,这种机组的发电机转速不随风速变化而变化,而是维持在保证输出频率达到电网要求的恒定转速上运行。由于恒定转速的机组在风速变化时经常无法达到最佳叶尖速比,因此这种机组风能利用效率比较低。
为了实现最大的风能捕获,提高效率,需要风轮转速随着风速变化而变化。因此,目前主流的并网型大型风力发电机组普遍采用的是变速恒频的发电系统。变速恒频发电系统主要有两种型式:双馈异步交流发电系统和永磁同步低速交流发电系统。
1、双馈异步交流发电系统
这种类型的发电系统采用双馈交流异步发电机,其转子由接到电网的变流器提供交流励磁。在发电机转速发生变化的时候,变流器以转差频率的电流来产生双馈电机转子励磁,此时,在定子中即可产生恒定频率的电动势。
这种变流器只需要转差功率大小的容量,容量较小,是目前兆瓦级风电机组的主流。但这种发电系统需要配合增速齿轮箱,把风轮转速升高到接近同步速度的水平。
2、永磁同步低速交流发电系统
永磁低速交流电机的转子采用多个极对数的永磁材料构成。由于极对数较多,同步转速非常低,接近于风轮的转速,因此,可以不经升速齿轮箱而直接由风轮驱动电机发电,传动效率高。发电机后面接全功率的变流器,以保证输出恒频的电动势。
这种发电系统电机往往比较大,也比较复杂,但其去掉了增速齿轮箱,可靠性得到了提升,在大型风电机组中也具有很大的市场。
3、还有一种半直驱型的机组,是融合了上述两种方案特点的一种型式。即传动系统采用较双馈机组更低增速比的齿轮箱,这可以减少增速箱的设计难度,相比双馈机组传动链具有更高的可靠性;发电系统采用较直驱机组更少极对数的发电机,但其同步速度远低于普通异步电机速度,通过变流器控制输出频率。半直驱即具备上面两者的优点,但同时具备上述两种型式的缺点。
总体来说,风电机组是通过变流器来保证输出电动势频率的,主要区别在于变流器类型和传动链的配置方式。
希望上述回答对您有帮助
7. 风力发电机变流器
风电变流器,是双馈风力发电机中,加在转子侧的励磁装置。 其主要功能是在转子转速n变化时,通过变流器控制励磁的幅值、相位、频率等,使定子侧能向电网输入恒频电。 包括功率模块、控制模块、并网模块。
变流器采用三相电压型交-直-交双向变流器技术,核心控制采用具有快速浮点运算能力的“双DSP的全数字化控制器”;在发电机的转子侧变流器实现定子磁场定向矢量控制策略,电网侧变流器实现电网电压定向矢量控制策略;系统具有输入输出功率因数可调、自动软并网和最大功率点跟踪控制功能。 功率模块采用高开关频率的IGBT功率器件,保证良好的输出波形。 这种整流逆变装置具有结构简单、谐波含量少等优点,可以明显地改善双馈异步发电机的运行状态和输出电能质量。 这种电压型交-直-交变流器的双馈异步发电机励磁控制系统,实现了基于风机最大功率点跟踪的发电机有功和无功的解耦控制,是目前双馈异步风力发电机组的一个代表方向。