1. 光伏并网逆变器结构
目前光伏逆变器行业国际领军者是德国艾斯玛(SMA)公司,技术处在行业的顶点。国内比较有实力的并网逆变器企业有:合肥阳光电源、三晶新能源、中达电通、山亿新能源、北京科诺伟业、艾索新能源等;而离网逆变器的技术发展相对较成熟,国内已拥有一批技术较领先的企业。
1.要求具有较高的效率。由于目前太阳电池的价格偏高,为了最大限度地利用太阳电池,提高系统效率,必须设法提高逆变器的效率。
2.要求具有较高的可靠性。目前光伏发电系统主要用于边远地区,许多电站无人值守和维护,这就要求逆变器具有合理的电路结构,严格的元器件筛选,并要求逆变器具备各种保护功能,如输入直流极性接反保护,交流输出短路保护,过热、过载保护等。
3.要求直流输入电压有较宽的适应范围,由于太阳电池的端电压随负载和日照强度而变化,蓄电池虽然对太阳电池的电压具有重要作用,但由于蓄电池的电压随蓄电池剩余容量和内阻的变化而波动,特别是当蓄电池老化时其端电压的变化范围很大,如12V蓄电池,其端电压可在10V~16V之间变化,这就要求逆变器必须在较大的直流输入电压范围内保证正常工作,并保证交流输出电压的稳定。
4.在中、大容量的光伏发电系统中,逆变电源的输出应为失真度较小的正弦波。这是由于在中、大容量系统中,若采用方波供电,则输出将含有较多的谐波分量,高次谐波将产生附加损耗,许多光伏发电系统的负载为通信或仪表设备,这些设备对电网品质有较高的要求,当中、大容量的光伏发电系统并网运行时,为避免与公共电网的电力污染,也要求逆变器输出正弦波电流。编辑本段工作原理 逆变器将直流电转化为交流电,若直流电压较低,则通过交流变压器升压,即得到标准交流电压和频率。对大容量的逆变器,由于直流母线电压较高,交流输出一般不需要变压器升压即能达到220V,在中、小容量的逆变器中,由于直流电压较低,如12V、24V,就必须设计升压电路。 中、小容量逆变器一般有推挽逆变电路、全桥逆变电路和高频升压逆变电路三种,推挽电路,将升压变压器的中性插头接于正电源,两只功率管交替工作,输出得到交流电力,由于功光伏并网逆变器率晶体管共地边接,驱动及控制电路简单,另外由于变压器具有一定的漏感,可限制短路电流,因而提高了电路的可靠性。其缺点是变压器利用率低,带动感性负载的能力较差。 全桥逆变电路克服了推挽电路的缺点,功率晶体管调节输出脉冲宽度,输出交流电压的有效值即随之改变。由于该电路具有续流回路,即使对感性负载,输出电压波形也不会畸变。该电路的缺点是上、下桥臂的功率晶体管不共地,因此必须采用专门驱动电路或采用隔离电源。另外,为防止上、下桥臂发生共同导通,必须设计先关断后导通电路,即必须设置死区时间,其电路结构较复杂。编辑本段控制电路工作 上述几种逆变器的主电路均需要有控制电路来实现,一般有方波和正弦波两种控制方式,方波输出的逆变电源电路简单,成本低,但效率低,谐波成份大。正弦波输出是逆变器的发展趋势,随着微电子技术的发展,有PWM功能的微处理器也已问世,因此正弦波输出的逆变技术已经成熟。1.方波输出的逆变器 1.方波输出的逆变器目前多采用脉宽调制集成电路,如SG3525,TL494等。实践证明,采用SG3525集成电路,并采用功率场效应管作为开关功率元件,能实现性能价格比较高的逆变器,由于SG3525具有直接驱动功率场效应管的能力并具有内部基准源和运算放大器和欠压保护功能,因此其外围电路很简单。2.正弦波输出的逆变器 2.正弦波输出的逆变器控制集成电路,正弦波输出的逆变器,其控制电路可采用微处理器控制,如INTEL公司生产的80C196MC、摩托罗拉公司生产的MP16以及MI-CROCHIP公司生产的PIC16C73等,这些单片机均具有多路PWM发生器,并可设定上、下桥臂之间的死区时间,采用INTEL公司80C196MC实现正弦波输出的电路,80C196MC完成正弦波信号的发生,并检测交流输出电压,实现稳压。编辑本段主电路功率器件的选择 逆变器的主功率元件的选择至关重要,目前使用较多的功率元件有达小功率的光伏并网逆变器设计图林顿功率晶体管(BJT),功率场效应管(MOS-FET),绝缘栅晶体管(IGBT)和可关断晶闸管(GTO)等,在小容量低压系统中使用较多的器件为MOSFET,因为MOSFET具有较低的通态压降和较高的开关频率,在高压大容量系统中一般均采用IGBT模块,这是因为MOSFET随着电压的升高其通态电阻也随之增大,而IGBT在中容量系统中占有较大的优势,而在特大容量(100kVA以上)系统中,一般均采用GTO作为功率元件。 光伏逆变器并网逆变器太阳能逆变器SolarMax的光伏逆变器规格全,既有小功率的组串逆变器,又有大功率的集中式逆变器,随着中国光伏发电市场的迅速发展,SolarMax逆变器必然会被越来越多的中国客户使用。
2. 光伏并网逆变器工作原理图
从古瑞瓦特并网逆变器来看,并网逆变器就是将太阳电板产生的直流电转化为交流电,然后通过升压变压器把电压、频率、相位按要求调整,达到主力电网的要求后送到国家电网中,然后用户通过电网使用太阳能发电。
3. 光伏并网逆变器的工作原理
一、指代不同
1、光伏并网逆变器:主要是直流系统,即将太阳电池发出的电能给蓄电池充电,而蓄电池直接给负载供电。
2、风力发电并网逆变器:可以将直流电转换成交流电外,其输出的交流电可以与市电的频率及相位同步,因此输出的交流电可以回到市电。
二、特点不同
1、光伏并网逆变器:要求具有较高的效率。由于太阳电池的价格偏高,为了最大限度地利用太阳电池,提高系统效率,必须设法提高逆变器的效率。
2、风力发电并网逆变器:将直流电源转换为交流电源,以便送回电网。并网逆变器的输出电压的频率需和电网频率(50或60Hz)相同,一般会用机器中的振荡器达成,并且也会限制输出电压不超过电网电压。
三、原理不同
1、光伏并网逆变器:逆变器将直流电转化为交流电,若直流电压较低,则通过交流变压器升压,即得到标准交流电压和频率。对大容量的逆变器,由于直流母线电压较高,交流输出一般不需要变压器升压即能达到220V。
2、风力发电并网逆变器:有使用较新的高频变压器、传统的工频变压器,或是无变压器的逆变器架构。高频变压器不是直接提供120 V或240 V的AC电源,而是有电脑控制的多步程式,让电源转换为高频的交流电,再转换为直流电,最后再转换为电源需要的电压及频率。
4. 光伏并网逆变器结构图解
一、指代不同1、光伏并网逆变器:主要是直流系统,即将太阳电池发出的电能给蓄电池充电,而蓄电池直接给负载供电。
2、风力发电并网逆变器:可以将直流电转换成交流电外,其输出的交流电可以与市电的频率及相位同步,因此输出的交流电可以回到市电。二、特点不同1、光伏并网逆变器:要求具有较高的效率。由于太阳电池的价格偏高,为了最大限度地利用太阳电池,提高系统效率,必须设法提高逆变器的效率。
2、风力发电并网逆变器:将直流电源转换为交流电源,以便送回电网。
并网逆变器的输出电压的频率需和电网频率(50或60Hz)相同,一般会用机器中的振荡器达成,并且也会限制输出电压不超过电网电压。三、原理不同1、光伏并网逆变器:逆变器将直流电转化为交流电,若直流电压较低,则通过交流变压器升压,即得到标准交流电压和频率。
对大容量的逆变器,由于直流母线电压较高,交流输出一般不需要变压器升压即能达到220V。
2、风力发电并网逆变器:有使用较新的高频变压器、传统的工频变压器,或是无变压器的逆变器架构。
高频变压器不是直接提供120 V或240 V的AC电源,而是有电脑控制的多步程式,让电源转换为高频的交流电,再转换为直流电,最后再转换为电源需要的电压及频率。
5. 光伏并网逆变器结构图
并网逆变器:就是一定要连电网,断开电网它不能工作,因为输出地方需要检测电网情况后再进行并网动作的。一般控制模式采用电流型控制模式。
离网逆变器:离开电网照样工作,一般采用电压型控制模式。
混合形式的逆变器:灵活机动。电网出现问题的情况比较多得时候应用比较广泛,澳洲用的比较多
6. 光伏发电并网逆变技术
1)要求逆变器输出正弦波电流。并网光伏发电系统回馈给公用电网的电力,必须满足电网规定的指标,如逆变器的输出电流不能含有直流分量、逆变器输出电流的高次谐波必须尽量减少、不能对电网造成谐波污染等。
2)要求逆变器在负载和日照变化幅度较大的情况下均能高效运行。并网光伏发电系统的能量来自太阳能,而日照强度随气候而变化,这就要求逆变器能在不同的日照条件下均能高效运行。
3)要求逆变器能使太阳能电池阵列工作在最大功率点。太阳能电池的输出功率与日照、温度、负载的变化有关,即其输出特性具有非线性特性。这就要逆变器具有最大功率跟踪功能,即不论日照、温度等如何变化,都能通过逆变器的自动调节实现阵列的最佳运行。
4)要求逆变器具有体积小、可靠性高等特点。对于分布式并网光伏发电系统,其逆变器通常安装在室内或壁挂于墙上,因此对其体积、重量均有限制。另外,对整机的可靠性也提出较高的要求。由于太阳能电池的寿命均在20年以上,因此其配套设备的寿命也必须与其相当。
5)要求在市电断电状况下逆变器在有日照时能够单独供电。
7. 太阳能光伏并网逆变器的设计
当前, 随着化石能源消耗的不断增长和地球生态环境的日益恶化,世界各国都在积极寻找一种可持续发展且对生态环境无污染的新能源。
太阳能作为一种高效无污染的新能源,已成为了当今能源结构中一个重要的组成部分。光伏并网发电技术已成为太阳能光电应用的主流。本文以光伏并网发电系统为研究对象,对其进行了详细的分析和研究。首先,本文介绍了课题的研究背景、研究意义、光伏发电的现状与发展情况。并提出了保证光伏并网发电系统正常运行所需的关键技术问题。其次,根据太阳能电池的工作原理分析其工作特性并建立数学模型。逐章对光伏并网发电系统的各种关键技术问题进行了详细的分析与研究,提出具有针对性的解决方案。介绍了最大功率点跟踪原理以及目前常用的几种跟踪方法,通过对这几种常用控制方法的研究对比找出其运行中存在的优缺点,提出了基于模糊/PID双模态的MPPT跟踪方法。对光伏并网发电系统的孤岛检测问题进行了较为深入的理论分析和研究,提出基于周期性双向扰动正反馈有源频率漂移法的孤岛主动检测方法,以提高电力终端电网的安全性和供电的可靠性8. 光伏并网逆变器结构组成
光伏系统的组成(按顺序串起来):
1. 光伏组件 2. 光伏组件支架 3. 光伏直流线缆 4. 光伏线缆槽 5. 直流汇流箱 6. 直流汇流柜 7. 逆变器 8. 交流输出线缆(及线缆槽)
9. 交流配电箱(或交流配电柜)
10. 隔离变压器(如果需要的话)
11. 光伏监控通信系统 12. 交流电表 13. 如果需要的话,还有环境监测系统 等 以上是主要部分