紫外-可见漫反射光谱仪(紫外可见漫反射光谱仪原理)

海潮机械 2023-01-16 20:32 编辑:admin 135阅读

1. 紫外可见漫反射光谱仪原理

短语1.UV-Visible-NIR Spectrophotometer紫外2.UV-Vis UV-Visible Spectrophotometer可见光分光光度计3.UV-Visible Spectrophotometer紫外 ; 可见光分光光度计 ; 分光光度计 ; 光谱仪

2. 紫外可见漫反射光谱仪器

优点:

  1:没有色差;

  2:在广泛的可见光范围内记录天体发出的信息,且相对于折射望远镜比较容易制作。但由于它也存在固有的不足:如口径越大,视场越小,物镜需要定期镀膜等;

  3:对于反射镜的材料,只要求它的膨胀系数较小、应力较小和便于磨制。磨制好的`反射镜表面通常镀有一层铝膜,它对红外区和紫外区都有较好的反射律,适于在较宽的波段范围研究天体的光谱和光度。

  4:反射望远镜的镜筒一般较短。大型的反射望远镜主要用于天体物理的研究工作,特别是暗弱天体的分光、测光和直接照相等。

  缺点:

  1:反射式望远镜的性能很大程度上取决于所使用的物镜。通常使用的球面物镜具有容易加工的特点,但是如果所设计的望远镜焦比比较小,则会出现比较严重的光学球差;

  2:由于平行光线不能精确的聚焦于一点,所以物象将会变得模糊。因而大口径,强光力的反射式望远镜的物镜通常采用非球面设计,最常见的非球面物镜是抛物面物镜;

  3:由于抛物面的几何特性,平行于物镜光轴的光线将被精确的汇聚在焦点上,因而能大大改善像质。但即使是抛物面物镜的望远镜仍然会存在轴外像差。

3. 漫反射紫外可见光谱法

平时在专业实验中大量的使用光学透镜和滤光片,光穿过被透射的物体为透明体或半透明体,如如玻璃,滤色片时,若透明体是无色的,除少数光被反射外,大多数光均透过物体,若是单色片时会只透过该单色频率光近似频率的光谱段,这样得到的光谱就叫透射谱。反射光谱也比较好理解的,光照到物体上会吸收某种波长的光,其余光发生反射。比如,钠原子会吸收黄光,有著名的钠双黄线的说法的。每种原子会吸收光的频率不同,这决定于原子能级。一般说来,当光子的能量与该原子某两个能级的能量差相等时,这种光子将被该原子吸收,所以说反射谱可以反应透过介质的物质状况

4. 紫外可见吸收光谱和紫外可见漫反射光谱

光谱分如下几种形式.

①线状光谱.由狭窄谱线组成的光谱.单原子气体或金属蒸气所发的光波均有线状光谱,故线状光谱又称原子光谱.当原子能量从较高能级向较低能级跃迁时,就辐射出波长单一的光波.严格说来这种波长单一的单色光是不存在的,由于能级本身有一定宽度和多普勒效应等原因,原子所辐射的光谱线总会有一定宽度(见谱线增宽);即在较窄的波长范围内仍包含各种不同的波长成分.原子光谱按波长的分布规律反映了原子的内部结构,每种原子都有自己特殊的光谱系列.通过对原子光谱的研究可了解原子内部的结构,或对样品所含成分进行定性和定量分析.

②带状光谱.由一系列光谱带组成,它们是由分子所辐射,故又称分子光谱.利用高分辨率光谱仪观察时,每条谱带实际上是由许多紧挨着的谱线组成.带状光谱是分子在其振动和转动能级间跃迁时辐射出来的,通常位于红外或远红外区.通过对分子光谱的研究可了解分子的结构.

③连续光谱.包含一切波长的光谱,赤热固体所辐射的光谱均为连续光谱.同步辐射源(见电磁辐射)可发出从微波到X射线的连续光谱,X射线管发出的轫致辐射部分也是连续谱.

④吸收光谱.具有连续谱的光波通过物质样品时,处于基态的样品原子或分子将吸收特定波长的光而跃迁到激发态,于是在连续谱的背景上出现相应的暗线或暗带,称为吸收光谱.每种原子或分子都有反映其能级结构的标识吸收光谱.研究吸收光谱的特征和规律是了解原子和分子内部结构的重要手段.吸收光谱首先由J.V.夫琅和费在太阳光谱中发现(称夫琅和费线),并据此确定了太阳所含的某些元素.

5. 紫外可见漫反射吸收光谱

目前较为理想的紫外线吸收剂/光稳定剂多为复配型的

特别是以水杨酸酯类、苯酮类、苯并三唑类、取代丙烯腈类、三嗪类与受阻胺类复配,可取得比任何单独紫外线吸收剂更为理性的效果.当在饱和碳氢化合物中引入含有p键的不饱和基团时,会使这些化合物的最大吸收波长位移至紫外及可见光区,这种不饱和基团成为生色团.

6. 紫外可见漫反射光谱基本原理

分子的紫外可见吸收光谱法是基于分子内电子跃迁产生的吸收光谱进行分析的一种常用的光谱分析法。分子在紫外-可见区的吸收与其电子结构紧密相关。紫外光谱的研究对象大多是具有共轭双键结构的分子。如,胆甾酮(a)与异亚丙基丙酮(b)分子结构差异很大,但两者具有相似的紫外吸收峰。两分子中相同的O=C-C=C共轭结构是产生紫外吸收的关键基团。

电子跃迁类型有:

(1)σ→σ* 跃迁 指处于成键轨道上的σ电子吸收光子后被激发跃迁到σ*反键轨道

(2)n→σ* 跃迁 指分子中处于非键轨道上的n电子吸收能量后向σ*反键轨道的跃迁

(3)π→π* 跃迁 指不饱和键中的π电子吸收光波能量后跃迁到π*反键轨道。

(4)n→π* 跃迁 指分子中处于非键轨道上的n电子吸收能量后向π*反键轨道的跃迁。

电子跃迁类型不同,实际跃迁需要的能量不同紫外-可见光区一般用波长(nm)表示。其研究对象大多在200-380 nm的近紫外光区和/或380-780 nm的可见光区有吸收。紫外-可见吸收测定的灵敏度取决于产生光吸收分子的摩尔吸光系数。该法仪器设备简单,应用十分广泛。

7. 漫反射红外光谱仪

红外光谱仪的基本操作步骤:

1、打开红外光谱仪的电源开关。

2、点击电脑屏幕打开IRsolution工作站软件。

3、点击测定,使屏幕转到测定界面。之后初始化仪器。

4、制备溴化钾空白片和样品压片。

5、将压制好的溴化钾空白片(不含样品的溴化钾空片)放入光谱仪样品仓内的样品架上。

6、点击测定按钮下的背景按钮,输入光谱名称,确认采集参比背景光谱。

7、背景谱图采集完毕后,将待测样品片放入光谱仪内,关上仓盖。

8、软件可按要求对谱图进行各种分析处理,从文件菜单中选择打印,将谱图以不同形式打印出报告。

9、退出系统。

二、仪器使用注意事项

1、仪器一定要安装在稳定牢固的实验台上,远离振动源。

2、供试品测试完毕后应及时取出,长时间放置在样品室中会污染光学系统,引起性能下降。样品室应保持干燥,应及时更换干燥剂。

3、所用的试剂、试样保持干燥,用完后及时放入干燥器中。

4、在工作期间,不可中途断电。

5、压片模具及液体吸收池等红外附件,使用完后应及时擦拭干净,必要时清洗,保存在干燥器中,以免锈蚀。

6、光路中有激光,开机时严禁眼睛进入光路。

7、测定完毕,要及时做好仪器使用登记记录。

8. 紫外可见光漫反射光谱仪

UV是紫外,VIS是可见光,意思就是波长范围是紫外到可见光。

光谱仪是将成分复杂的光,分解为光谱线的科学仪器,由棱镜或衍射光栅等构成,利用光谱仪可测量物体表面反射的光线,阳光中的七色光是肉眼能分的部分,但若通过光谱仪将阳光分解,按波长排列,可见光只占光谱中很小的范围,其余都是肉眼无法分辨的光谱,如红外线、微波、紫外线等等,通过光谱仪对光信息的抓取、或电脑化自动显示数值仪器的显示和分析,从而测知物品中含有何种元素,光谱仪是应用光学原理,对物质的结构和成分进行观测、分析和处理的基本设备,具有分析精度高、测量范围大、速度快和样品用量少等优点。

9. 紫外可见光漫反射光谱怎么看

紫外和可见光谱主要用于化合物的鉴定、纯度检查、异构物的确定、位阻作用的测定、氢键强度的测定以及其他相关的定量分析之中,但通常只是一种辅助分析手段,还需借助其他分析方法,例如红外、核磁、EPR等综合方法对待测物进行分析,以得到精准的数据。

10. 紫外可见漫反射仪器

随光谱技术的迅速发展,光学测量在表面表征中已占有非常重要的位置。

由测量染料、颜料而发展起来的漫反射紫外可见光谱(DRUVS)是检测非单晶材料的一种有效方法。

在催化剂结构研究中,DRUVS已用于研究过渡金属离子及其化合物结构、活性组分与载体间的相互作用。

本文就二氧化碳加氢甲烷化催化刑(分别担载Fe、C。

、Ni、Ru等)体系中添加过渡金属、VIIIB族金属和稀土引起催化剂的DRUVS特征变化的信息,判断多组分催化剂组分间、组分与载体间相互作用结果对其催化活性的影响;对有新物种生成的催化剂,可用F(R∞)变化值定量标定其催化活性的大小。

11. 紫外可见光漫反射的基本原理

  由高压汞灯或氙灯发出的紫外光和蓝紫光经滤光片照射到样品池中,激发样品中的荧光物质发出荧光,荧光经过滤过和反射后,被光电倍增管所接受,然后以图或数字的形式显示出来。

  物质荧光的产生是由在通常状况下处于基态的物质分子吸收激发光后变为激发态, 这些处于激发态的分子是不稳定的,在返回基态的过程中将一部分的能量又以光的形式放出,从而产生荧光.

  不同物质由于分子结构的不同,其激发态能级的分布具有各自不同的特征,这种特征反映在荧光上表现为各种物质都有其特征荧光激发和发射光谱;,因此可以用荧光激发和发射光谱的不同来定性地进行物质的鉴定。

  在溶液中,当荧光物质的浓度较低时,其荧光强度与该物质的浓度通常有良好的正比关系,即IF=KC,利用这种关系可以进行荧光物质的定量分析,与紫外-可见分光光度法类似,荧光分析通常也采用标准曲线法进行。