实验室光催化仪器(光电催化装置)

海潮机械 2023-01-04 01:54 编辑:admin 130阅读

1. 光电催化装置

随着光催化技术的发展,大量的化合物半导体被用作光催化材料,然而广泛的研究表明化合物半导体禁带宽度过大、光稳定差、光量子效率低等缺点严重限制了其自身的发展。为克服多元光催化材料的缺点,大多数研究者往往采用掺杂、复合等方法以调节光催化材料的能带结构,加强材料对可见光的吸收,提高光生载流子的分离效率及材料的光稳定性。然而,单质类光催化材料的出现极大的丰富了目前光催化材料的种类和内涵,其简单的组成和优良的光催化性能使之迅速成为当前光催化研究领域的热点。鉴于此,本论文将开展针对单质类光催化材料的制备、光催化性能以及光催化机理的探索性研究结合不同单质材料的XRD、SEM、TEM、UV-Vis DRS、XPS等表征测试数据和光电测试结果,考察单质薄膜材料晶型、组成、形貌、厚度等对材料光催化性能的影响。主要研究成果如下:1、利用电化学沉积方法成功制备出了非晶态单质硒薄膜,随沉积时间增加会引起薄膜表面形貌发生变化,膜厚对硒薄膜的吸光范围有所影响,且电流时间曲线测试表明膜厚是影响薄膜光电催化性能的重要因素,沉积2小时所得硒薄膜具有最佳的光电催化性能。电化学测试结果表明实验所获硒薄膜为n型半导体,具有较好的可见光吸收性能,可见光下能有效的降解亚甲基蓝。单质硒薄膜的光催化机理与传统半导体化合物光催化剂类似,实现染料的光催化降解。2、利用电沉积法成功制备出了具有半金属性质的单质Bi光催化材料。光电及ESR测试表明金属性的单质Bi在光照下能明确的产生光生载流子,氧化OH-产生羟基自由基。单质铋薄膜表面存在非晶氧化层,除去该层氧化物后铋薄膜的光电流强度提高到原来的4.4倍,说明Bi薄膜的光催化活性源自半金属性的单质Bi。发现电沉积铋薄膜能有效的光氧化降解NO,并有稳定的光催化性能,具备表面等离子体共振和带间跃迁两种光吸收途径。通过对半金属铋的能带结构分析,提出了深层价带能级和导带能级参与的金属光催化反应机理。利用磁控溅射法制备出了具备半金属性质的单质铋薄膜。发现溅射制备的Bi薄膜随膜厚的增加其紫外可见光吸收曲线表现出近似带边吸收的光吸收特性,发现铋薄膜的吸光特征与铋薄膜各向异性的光响应有紧密关系,发现调节铋薄膜的a/b轴比率分布情况可增强铋薄膜的表面等离子体吸光性能。解释了最终光氧化产物为NO2的原因,并提出了NO在溅射铋薄膜上的光氧化降解机理。3、利用电沉积法制备了单质Sn薄膜。与Bi薄膜类似,Sn薄膜表面也存在一层尺寸在纳米范围的非晶氧化层,且光照会导致氧化膜膜厚和晶化程度的增加。实验结果表明Sn薄膜存在带间跃迁和等离子体共振两种光吸收方式,其中前者由表面氧化层中存在的Sn02和SnO的带隙吸收引起,而后者则是由表面氧化层覆盖下金属Sn颗粒的表面等离子体共振吸收引起的。光电实验表明表面氧化膜的厚度或晶型是影响光电流大小的关键因素。光电实验还证明沉积Sn薄膜可以在电辅助条件下光解水产氢。金属Sn颗粒与表面氧化层的功函数的差异,引起Sn02和SnO能带向上发生弯曲,结果导致氧化物的导带电位明显负移,产生了催化氢还原的能力。本论文以单质类光催化材料(Se、Bi、Sn)为研究对象,研究其光催化行为,以光电性能和催化活性为研究重点,探究三种材料的催化机理,本论文采用电化学沉积技术和磁控溅射沉积技术制备硒(Se)、铋(Bi)、锡(Sn)单质光催化薄膜材料。通过改变电化学沉积和溅射沉积参数来获得具有不同形貌、组成颗粒尺寸及厚度的单质薄膜材料。利用电化学测试手段考察不同光照条件下各单质薄膜材料的光电响应曲线,获得相应的光电催化性能。针对不同单质薄膜材料,分别采用染料降解、氮氧化物氧化以及光解水制氢等手段考察材料的光催化活性。

2. 光电催化装置是电解池吗

通过直接电解纯水产生高纯氢气(不加碱),电解池只电解纯水即可产氢。

通电后,电解池阴极产氢气,阳极产氧气,氢气进入氢/水分离器。氧气排入大气。氢/水分离器将氢气和水分离。

氢气进入干燥器除湿后,经稳压阀、调节阀调整到额定压力(0.02~0.45Mpa可调)由出口输出。

电解池的产氢压力由传感器控制在0.45Mpa左右,当压力达到设定值时,电解池电源供应切断;压力下降,低于设定值时电源恢复供电。

3. 光电催化装置怎么搭建

1、表面负载的纳米光催化材料如在纳米氧化物Ti01. Fe:03、WO、Al203、 Sri0、V203、Cu0、Ni0、Zn0等表面负载;

2、表面耦合型纳米半导体光催化剂,例如CdS-Zn0、CdS-Sn0、CdS-Ti02、CdSe-Tioz. SnO-Ti02等;

3、钙钛矿型氧化物结构的光催化剂如BaTi03. SrTi03. LaFe03等构成的光催化剂;

4、担载型光催化剂在吸附性载体(如氧化硅、沸石、氧化铝、活性炭)表面负载Ti0'. Zn0等光催化剂;

5、纳米金属氧化物 如Ti02. Fe203、MoO.、W03、Sn0、V203、Tb203、Cu0、Al2 03、l\Ji0、Zn0等

4. 光催化反应装置

光催化性能测试是基于光催化剂在光照的条件下具有的氧化还原能力,从而可以达到净化污染物、物质合成和转化等目的。

通常情况下,光催化氧化反应以半导体为催化剂,以光为能量,将有机物降解为二氧化碳和水。因此光催化技术作为一种高效、安全的环境友好型环境净化技术,对室内空气质量的改善已得到国际学术界的认可。

5. 光电催化装置的作用

催化作用可分以下几种类型:

①均相催化。催化剂与反应物均处于同一相中的催化作用,如均相酸碱催化、均相络合催化等。均相催化大多在液相中进行。均相催化剂的活性中心比较均一,选择性较高,副反应较少,但催化剂难以分离、回收和再生。

②多相催化。发生在两相界面上的催化作用。通常催化剂为多孔固体,反应物为液体或气体。在多相催化反应中,固体催化剂对反应物分子发生化学吸附作用,使反应物分子得到活化,降低了反应的活化能,而使反应速率加快。固体催化剂表面是不均匀的,只有部分点对反应物分子发生化学吸附,称为活性中心。工业生产中的催化作用大多属于多相催化。

③生物催化。生物体内在酶作用下进行的催化反应。酶的催化作用具有高选择性、高催化活性、反应条件温和等特点,但受温度、溶液中的pH值、离子强度等因素影响较大。

④自动催化。反应产物的自我催化作用。在一些反应中,某些反应的产物或中间体具有催化功能,使反应经过一段诱导期后速率大大加快。自催化作用是发生化学振荡的必要条件之一。

其他还有电催化、光助催化、光电催化等......

6. 光催化设备

1

UV光解除味原理

UV光解除味设备全称UV光解氧化除味设备,设备的核心是UV灯管,UV灯管在启动之后,能够产生大量的紫外线光速对恶臭气体进行照射,将恶臭气体降解转化,变成低分子化合物【UV+O₂→O﹣+O*(活性氧)O+O₂→O₃(臭氧)】,例如变成CO₂、H₂O等无害气体,达到有效的去除异味的效果,且不会产生二次污染。

2

光催化原理

通过特定波长的光线照射,激活纳米光催化剂,生成电子空穴对,使光催化剂与周围的HO和O分子发生作用,结合生成羟基自由基·OH,羟基自由基·OH可以层层锁住空气中各种有害成分,并且能分解有害成分的分子构造,抑制细菌生长和病毒的活性能力,从而达到杀菌、净化空气、除臭、防霉以及消除空气污染的目

适用场所

适用于各种产生异味的场所,如餐厅异味、牛皮纸浆、炼油、炼焦、石化、煤气、粪便处理、制药、农药、合成树脂、橡胶、垃圾处理、污水处理、皮革加工、化肥厂等产生的氧化硫、氨、硫醇类、苯乙烯等恶臭气体。

7. 光电催化装置工作原理

用非氧化性的强酸与弱酸盐(FeS)反应,可生成硫化氢(H2S溶于水即得弱酸氢硫酸):

FeS+H2SO4(稀)=FeSO4+H2S↑;

FeS+2HCl=FeCl2+H2S↑

硫化氢能溶于水形成氢硫酸,因此不能用排水法收集。因硫化氢的密度比空气大,可用瓶口向上的排空气集气法收集。