天平秤的组成(天平秤的各部分名称)

海潮机械 2023-01-04 14:59 编辑:admin 225阅读

1. 天平秤的各部分名称

我们所说的天平一般都是托盘天平,它的主要组成部分包括底座,托盘架,托盘,指针,分度盘,标尺,游码,平衡螺母。

详细点

的组成部分 普通标牌天平主要由立柱、横梁、吊挂系统、底座和制动装置组成。立柱垂直固定在底座上,用以支撑横梁。立柱下部装有分度牌,顶部装有托架,在天平不工作时支托横梁。在横梁中部装有一把中刀。天平工作时,中刀搁置在与升降杆顶端连接的刀承上,作为支点

2. 天平秤的简介

官网地址:

www.tpxmgl.com

公司地址:长沙市芙蓉区韶山路078号九层 

公司简介: 湖南省天平项目管理有限公司成立于2002年04月10日,注册地位于长沙市芙蓉区韶山路078号九层。

3. 天平秤各个部分的名称

天平是一种等臂杠杆,也是一种衡器,用于衡量物体质量的仪器。 它依据杠杆原理制成,在杠杆的两端各有一小盘,一端放砝码,另一端放要称的物体,杠杆中央装有指针,两端平衡时,两端的质量相等。现代的天平有普通天平、分析天平,有常量分析天平、微量分析天平、半微量分析天平。

4. 天平秤的各部位名称

天平的原理:

天平是一种衡器,是衡量物体质量的仪器。它依据杠杆原理制成,在杠杆的两端各有一小盘,一端放砝码,另一端放要称的物体,杠杆中央装有指针,两端平衡时,两端的质量(重量)相等。

简介:

天平,亦称天秤,在物理学上,是一种利用作用在物体上的重力以平衡原理测定物体质量或确定作为质量函数的其他量值、参数或特性的仪器。由支点(轴)在梁的中心支着天平梁而形成两个臂,每个臂上挂着一个盘,其中一个盘里放着已知质量的物体,另一个盘里放待测物体,固定在梁上的指针在不摆动且指向正中刻度时的偏转就指示出待测物体的质量。

基本结构:

普通天平主要由立柱、横梁、吊挂系统、底座和制动装置组成。

立柱垂直固定在底座上,用以支撑横梁。立柱下部装有分度牌,顶部装有托架,在天平不工作时支托横梁。在横梁中部装有一把中刀。天平工作时,中刀搁置在与升降杆顶端连接的刀承上,作为支点。中刀两边装有两把边刀,分别作为重点和力点,起承受和传递载荷的作用。中刀下横梁底面装有指针,指针上固定有可上下移动以调节横梁重心位置的重心砣,它起调整天平灵敏度的作用。

横梁顶部刻有分度标尺,标尺上有一移动游码。横梁两端还装有可调整天平空载平衡位置的平衡螺母。

吊挂系统包括小吊环,挂盘架和秤盘。挂盘架吊挂在小吊环吊钩上,两把边刀分别通过小吊环承受秤盘砝码和被称物的重力。

底座装有两个调整天平水平的螺旋调整脚,底座上面还安置有水准器以显示天平水平度。调整水平是为避免天平不水平而产生称量误差。

制动装置主要由开关旋钮、开关轴和偏心凸轮(或连杆)组成。转动旋钮使凸轮(或偏心连杆)偏转一定角度,即可使立柱中的升降杆上下移动,通过中刀承将横梁托起或落下,以开启或关闭天平。

使用注意事项:

1、要放置在水平的地方。

2、使用前要使天平左右平衡(游码必须归“0”平衡螺母向相反方向调,使用口诀:左高端,向左调)。

3、砝码不能用手拿要用镊子夹取.千万不能把砝码弄湿、弄脏(这样会让砝码腐蚀生锈,砝码质量变大,测量结果不准确),游码也要用镊子拨动。

4、被测物体的质量不能超过天平量程或低于天平游码最小刻度。

5、潮湿的物体和化学药品不能直接放在天平的盘中。

6、称量时注意左物右码(游码示值以左边对齐刻度线为准)。

7、称量后要把游码归零,砝码用镊子放回砝码盒。

5. 天平秤的各部分名称图片

秤很有多种类:弹簧秤、天平秤、电子秤、磅秤、杆秤、台秤……弹簧秤称出来的重量不精确,而且只能称轻的东西,但有个特点就是携带方便;天平秤称的重量非常准确,但只能称一些小巧的东西;电子秤我们经常能看到,菜场里、副食品商店、小吃店里都有,称起东西来很精确,还能一下子就算出价钱来呢;还有磅秤,它通常用来称分量重的东西,但是称的结果不是很精确。有的秤上写的是g,那是用来称很轻的东西的,有的秤上是kg做单位的,用来称较重的东西。要根据所称的东西的份量和需要的精确程度来选择用什么秤来称。

6. 天平秤的种类名称图片

答案:

解析:

  在使用天平时,首先要把天平放在水平台上,然后把游码放在标尺左端的零刻度线处.此时如果指针偏向中线左侧,横梁左端下沉,应将横梁右端的平衡螺母向右调,直到指针指在分度盘的中线处;如果此时指针总是晃动不停,等它停下来要用很长时间,这时不必等它停下来,可以以分度盘中线为准,看指针左右摆动的幅度,向左摆动的幅度大,则应向右调平衡螺母;向右摆动幅度大,则向左调;左右摆动幅度相等,则说明横梁平衡.天平调平的口诀是:游码归零,反向调节.

  调节平衡的天平就可以用来称量物体的质量了.先把被测物体放在左盘里,估计物体的质量,然后按照由大到小的顺序加减砝码,当加上最小的砝码时偏多,而去掉这个砝码又偏少时,可以移动游码直到指针指在分度盘的中央,此时天平平衡.所测物体的质量等于右盘中砝码的总质量加上游码指示的质量的和.读数时关键是读游码指示的质量,要看清分度值,并且以游码左端所对刻度为准.

  天平使用时的注意事项:从天平盘取放物体、加减砝码和移动游码的操作要动作轻缓、不要使天平发生剧烈的振动;取放砝码和拨动游码应用镊子;粉末状的物体或化学药品测量时可以将它们放在纸上进行称量.不过,为了准确应该在天平的左右两盘上各放一张相同的纸,再调节天平平衡.至于液体称量应将液体盛在容器中,称其总质量,减去容器的质量就是液体的质量.

  天平的使用步骤:(1)将天平放在水平桌面上,游码归零;(2)调节平衡螺母,使横梁平衡;(3)左物右码,不平衡时可移动游码,直至平衡;(4)结果=砝码质量+游码所对刻度值.

7. 天平秤的各部分名称图

五个最有力量的忍者村木叶忍者村、云隐忍者村、雾隐忍者村、沙隐忍者村、岩隐忍者村分属的国家被称为“忍者五大国”,只有他们的头领可以被称为“影”,也就是所谓的“五影”--火影、水影、雷影、风影、土影,是众多忍者中的最高等级。

现任五影五代火影千手纲手、五代水影·照美冥、四代雷影 砂比布拉扎、五代风影砂瀑之我爱罗、三代土影两天秤的大轩

8. 天平秤的组成部分

天平用于称量物体质量,狭义上也叫托盘天平 。 常用的精确度不高的天平。由托盘、刻度尺、指针、标尺、 游码、砝码等组成。精确度一般为0?.1或0?.2克。 一种衡器。由支点(轴)在梁的中心支着天平梁而形成两个臂,每个臂上挂着一个盘,其中一个盘里放着已知重量的物体,另一个盘里放待称重的物体,固定在梁上的指针在不摆动且指向正中刻度时的偏转就指示出待称重物体的重量。 使用注意: 1.要放置在水平的地方. 2.使天平左右平衡. 3.砝码不能用手拿,要用镊子夹取. 天平 (东魏):东魏孝静帝元善见的年号。 天平 (日本):日本圣武天皇的年号。 有狭义和广义之分。狭义的天平专指双盘等臂机械天平,是利用等臂杠杆平衡原理,将被测物与相应砝码比较衡量,从而确定被测物质量的一种衡器。广义的天平则包括双盘等臂机械天平、单盘不等臂机械天平和电子天平3类。   双盘等臂机械天平  一般按结构分为普通标牌天平、微分标牌天平和架盘天平 3种。也可按用途分为检定天平、分析天平、精密天平和普通天平4种。   检定天平是计量部门、商检部门或其他有关部门或工厂专门用来检查或校准砝码的天平。   分析天平是用于化学分析和物质精确衡量的高准确度天平。在大多数情况下,这类天平的最小分度值都小于最大称量的 10-5。分析天平可按衡量范围和最小分度值分为常量天平(称量和最小分度值分别为100~200g和0.01~1mg)、半微量天平 (30~100g和1~10µg)、微量天平(3~30g和0.1~1µg)和超微量天平(3~5g和0.1µg以下)。   精密天平广泛应用于各种物质的精密衡量,其最小分度值通常为最大称量的10-5~10-4。   普通天平用作物质的一般衡量。最小分度值等于或大于最大称量的10-4。   普通标牌天平  主要由立柱、横梁、吊挂系统、底座和制动装置组成(图1)。   立柱垂直固定在底座上,用以支撑横梁。立柱下部装有分度牌,顶部装有托架,在天平不工作时支托横梁。在横梁中部装有一把中刀。天平工作时,中刀搁置在与升降杆顶端连接的刀承上,作为支点。中刀两边装有两把边刀,分别作为重点和力点,起承受和传递载荷的作用。中刀下横梁底面装有指针,指针上固定有可上下移动以调节横梁重心位置的重心砣,它起调整天平灵敏度的作用。   横梁顶部刻有分度标尺,标尺上有一移动游码。横梁两端还装有可调整天平空载平衡位置的平衡螺母。   吊挂系统包括小吊环,挂盘架和秤盘。挂盘架吊挂在小吊环吊钩上,两把边刀分别通过小吊环承受秤盘砝码和被称物的重力。   底座装有两个调整天平水平的螺旋调整脚,底座上面还安置有水准器以显示天平水平度。调整水平是为避免天平不水平而产生称量误差。   制动装置主要由开关旋钮、开关轴和偏心凸轮(或连杆)组成。转动旋钮使凸轮(或偏心连杆)偏转一定角度,即可使立柱中的升降杆上下移动,通过中刀承将横梁托起或落下,以开启或关闭天平。   微分标牌天平  结构与普通标牌天平相似,不同的是:①横梁指针下端装有微分刻度牌。②立柱下端装有用以放大并在投影屏上显示微分读数值的电光系统。③吊挂系统增加了套筒式空气阻尼器,称量时能使横梁迅速停止摆动,便于定点准确读数。④在天平外框罩上装有凸轮杠杆式或其他形式的部分量程机械加码(一般为10~999mg)或全量程机械加码装置,以代替人工加码。微分标牌天平的最小分度值一般都在0.1mg以上,准确度也比普通标牌天平高。   架盘天平 一种双托盘天平(图2)。秤盘安放在横梁两边刀上方的盘架上,秤盘和托盘架重心高于横梁支点。砝码或被称物在处于秤盘前后位置时会引起秤盘盘架和横梁前后倾侧,在处于秤盘左右位置时会引起秤盘盘架的左右倾倒。为克服此缺点,架盘天平采取了加长中刀、边刀和加宽刀架的措施,并在结构设计上采用了罗伯威尔(Roberval)机构。在罗伯威尔机构(图3)中,杆杆AB、A′B′与纵杆AA′、BB′、支柱EE′铰链连接,组成两个相等的平行四边形AA′E′E和EE′B′B。当大小相等的力P、P′分别作用于左右横臂上时,对支柱来说,即使作用的位置不对称,也能水平地平衡。无论AB如何倾斜,AA′、BB′都与支柱EE′平行。从EE′的左侧来看,当将与纵杆AA′的距离为d的力P作用于横臂上时,就有一个与P大小相等、方向相同的力作用于A和A′点;同时,有一个值为P·d的转矩作用于纵杆AA′,从而在A点将杠杆拉向左侧,而在A′点将杠杆推向右侧。但由于杠杆受到EE′点的限制,在A、A′上将分别产生大小相等、方向相反的反作用力 f、f′,从而形成一个与P·d相等的反向转矩f·s(f′·s),结果P·d转矩被f·s(f′·s)所平衡。最后,在A、A′上只有与P相等的力起作用,而与P在横臂上的作用位置d无关。这种情况在EE′的右侧也完全相同。 阻尼天平 在梁上挂上专门的阻尼盒,使 天平的摆动能迅速停止. 电光阻尼天平 利用游标原理,能比较准确地读出指针的位置   单盘不等臂机械天平  也是以杠杆平衡原理设计的(图4)。工作时,在加上被衡量物体后,减去悬挂系统上的砝码,使横梁始终保持全载平衡状态。所减砝码质量加上微分度牌读数值,就是被衡量物体的质量。 上皿天平 秤盘在上侧,灵敏度较低.   电子天平  它是传感技术、模拟电子技术、数字电子技术和微处理器技术发展的综合产物,具有自动校准、自动显示、去皮重、自动数据输出、自动故障寻迹、超载保护等多种功能。电子天平通常使用电磁力传感器(见称重传感器),组成一个闭环自动调节系统,准确度高,稳定性好。电子天平的工作原理如图 5所示。当秤盘上加上被称物时,传感器的位置检测器信号发生变化,并通过放大器反馈使传感器线圈中的电流增大,该电流在恒定磁场中产生一个反馈力与所加载荷相平衡;同时,该电流在测量电阻Rm上的电压值通过滤波器、模/数转换器送入微处理器,进行数据处理,最后由显示器自动显示出被称物质量数值。

9. 天平秤的含义

九字加一笔除了丸字还有㐇,读作jiǔ。这个字的部首为乙字旁,结构为

上边一个公下边一个允读作:duì 、ruì 、yuè。这个字的部首为儿字旁。结构为上下结构。兊字的笔画共有6画。其笔画顺序为撇捺折捺撇折。

兊字同”兑”,其含义有1、喜悦。2、穴窍。3、通达。4、掉换。5、指汇兑。6、指象棋中的拼子。即牺牲己方的棋子以换吃对方的棋子。7、用天平秤金银。8、搀和;混合。

10. 天平秤的各部分名称图解

  物理(必修一)——知识考点归纳  第一章.运动的描述  考点一:时刻与时间间隔的关系  时间间隔能展示运动的一个过程,时刻只能显示运动的一个瞬间。对一些关于时间间隔和时刻的表述,能够正确理解。如:  第4s末、4s时、第5s初……均为时刻;4s内、第4s、第2s至第4s内……均为时间间隔。  区别:时刻在时间轴上表示一点,时间间隔在时间轴上表示一段。  考点二:路程与位移的关系  位移表示位置变化,用由初位置到末位置的有向线段表示,是矢量。路程是运动轨迹的长度,是标量。只有当物体做单向直线运动时,位移的大小等于路程。一般情况下,路程≥位移的大小。  考点三:速度与速率的关系  速度 速率  物理意义 描述物体运动快慢和方向的物理量,是矢  量 描述物体运动快慢的物理量,是  标量  分类 平均速度、瞬时速度 速率、平均速率(=路程/时间)  决定因素 平均速度由位移和时间决定 由瞬时速度的大小决定  方向 平均速度方向与位移方向相同;瞬时速度  方向为该质点的运动方向 无方向  联系 它们的单位相同(m/s),瞬时速度的大小等于速率  考点四:速度、加速度与速度变化量的关系  速度 加速度 速度变化量  意义 描述物体运动快慢和方向的物理量 描述物体速度变化快  慢和方向的物理量 描述物体速度变化大  小程度的物理量,是  一过程量  定义式  单位 m/s m/s2 m/s  决定因素 v的大小由v0、a、t  决定 a不是由v、△v、△t  决定的,而是由F和  m决定。 由v与v0决定,  而且 ,也  由a与△t决定  方向 与位移x或△x同向,  即物体运动的方向 与△v方向一致 由 或  决定方向  大小 ① 位移与时间的比值  ② 位移对时间的变化  率  ③ x-t图象中图线  上点的切线斜率的大  小值 ① 速度对时间的变  化率  ② 速度改变量与所  用时间的比值  ③ v—t图象中图线  上点的切线斜率的大  小值  考点五:运动图象的理解及应用  由于图象能直观地表示出物理过程和各物理量之间的关系,所以在解题的过程中被广泛应用。在运动学中,经常用到的有x-t图象和v—t图象。  1. 理解图象的含义  (1) x-t图象是描述位移随时间的变化规律  (2) v—t图象是描述速度随时间的变化规律  2. 明确图象斜率的含义  (1) x-t图象中,图线的斜率表示速度  (2) v—t图象中,图线的斜率表示加速度  第二章.匀变速直线运动的研究  考点一:匀变速直线运动的基本公式和推理  1. 基本公式  (1) 速度—时间关系式:  (2) 位移—时间关系式:  (3) 位移—速度关系式:  三个公式中的物理量只要知道任意三个,就可求出其余两个。  利用公式解题时注意:x、v、a为矢量及正、负号所代表的是方向的不同,  解题时要有正方向的规定。  2. 常用推论  (1) 平均速度公式:  (2) 一段时间中间时刻的瞬时速度等于这段时间内的平均速度:  (3) 一段位移的中间位置的瞬时速度:  (4) 任意两个连续相等的时间间隔(T)内位移之差为常数(逐差相等):  考点二:对运动图象的理解及应用  1. 研究运动图象  (1) 从图象识别物体的运动性质  (2) 能认识图象的截距(即图象与纵轴或横轴的交点坐标)的意义  (3) 能认识图象的斜率(即图象与横轴夹角的正切值)的意义  (4) 能认识图象与坐标轴所围面积的物理意义  (5) 能说明图象上任一点的物理意义  2. x-t图象和v—t图象的比较  如图所示是形状一样的图线在x-t图象和v—t图象中,  x-t图象 v—t图象  ①表示物体做匀速直线运动(斜率表示速度) ①表示物体做匀加速直线运动(斜率表示加速度)  ②表示物体静止 ②表示物体做匀速直线运动  ③表示物体静止 ③表示物体静止  ④ 表示物体向反方向做匀速直线运动;初  位移为x0 ④ 表示物体做匀减速直线运动;初速度为  v0  ⑤ 交点的纵坐标表示三个运动的支点相遇时  的位移 ⑤ 交点的纵坐标表示三个运动质点的共同速度  ⑥t1时间内物体位移为x1 ⑥ t1时刻物体速度为v1(图中阴影部分面积表  示质点在0~t1时间内的位移)  考点三:追及和相遇问题  1.“追及”、“相遇”的特征  “追及”的主要条件是:两个物体在追赶过程中处在同一位置。  两物体恰能“相遇”的临界条件是两物体处在同一位置时,两物体的速度恰好相同。  2.解“追及”、“相遇”问题的思路  (1)根据对两物体的运动过程分析,画出物体运动示意图  (2)根据两物体的运动性质,分别列出两个物体的位移方程,注意要将两物体的运动时间的关系反映在方程中  (3)由运动示意图找出两物体位移间的关联方程  (4)联立方程求解  3. 分析“追及”、“相遇”问题时应注意的问题  (1) 抓住一个条件:是两物体的速度满足的临界条件。如两物体距离最大、最小,恰好追上或恰好追不上等;两个关系:是时间关系和位移关系。  (2) 若被追赶的物体做匀减速运动,注意在追上前,该物体是否已经停止运动  4. 解决“追及”、“相遇”问题的方法  (1) 数学方法:列出方程,利用二次函数求极值的方法求解  (2) 物理方法:即通过对物理情景和物理过程的分析,找到临界状态和临界条件,然后列出方程求解  考点四:纸带问题的分析  1. 判断物体的运动性质  (1) 根据匀速直线运动特点x=vt,若纸带上各相邻的点的间隔相等,则可判断物体做匀速直线运动。  (2) 由匀变速直线运动的推论 ,若所打的纸带上在任意两个相邻且相等的时间内物体的位移之差相等,则说明物体做匀变速直线运动。  2. 求加速度  (1) 逐差法  (2)v—t图象法  利用匀变速直线运动的一段时间内的平均速度等于中间时刻的瞬时速度的推论,求出各点的瞬时速度,建立直角坐标系(v—t图象),然后进行描点连线,求出图线的斜率k=a.  第三章 相互作用  考点一:关于弹力的问题  1. 弹力的产出  条件:(1)物体间是否直接接触  (2) 接触处是否有相互挤压或拉伸  2.弹力方向的判断  弹力的方向总是与物体形变方向相反,指向物体恢复原状的方向。弹力的作用线总是通过两物体的接触点并沿其接触点公共切面的垂直方向。  (1) 压力的方向总是垂直于支持面指向被压的物体(受力物体)。  (2) 支持力的方向总是垂直于支持面指向被支持的物体(受力物体)。  (3) 绳的拉力是绳对所拉物体的弹力,方向总是沿绳指向绳收缩的方向(沿绳背离受力物体)。  补充:物体间点面接触时其弹力方向过点垂直于面,点线接触时其弹力方向过点垂直于线,两物体球面接触时其弹力的方向沿两球心的连线指向受力物体。  3. 弹力的大小  (1) 弹簧的弹力满足胡克定律: 。其中k代表弹簧的劲度系数,仅与弹簧的材料有关,x代表形变量。  (2) 弹力的大小与弹性形变的大小有关。在弹性限度内,弹性形变越大,弹力越大。  考点二:关于摩擦力的问题  1. 对摩擦力认识的四个“不一定”  (1) 摩擦力不一定是阻力  (2) 静摩擦力不一定比滑动摩擦力小  (3) 静摩擦力的方向不一定与运动方向共线,但一定沿接触面的切线方向  (4) 摩擦力不一定越小越好,因为摩擦力既可用作阻力,也可以作动力  2. 静摩擦力用二力平衡来求解,滑动摩擦力用公式 来求解  3. 静摩擦力存在及其方向的判断  存在判断:假设接触面光滑,看物体是否发生相当运动,若发生相对运动,则说明物体间有相对运动趋势,物体间存在静摩擦力;若不发生相对运动,则不存在静摩擦力。  方向判断:静摩擦力的方向与相对运动趋势的方向相反;滑动摩擦力的方向与相对运动的方向相反。  考点三:物体的受力分析  1.物体受力分析的方法  (1) 方法  (2) 选择  2.受力分析的顺序  先重力,再接触力,最后分析其他外力  3.受力分析时应注意的问题  (1) 分析物体受力时,只分析周围物体对研究对象所施加的力  (2) 受力分析时,不要多力或漏力,注意确定每个力的实力物体和受力物体,在力的合成和分解中,不要把实际不存在的合力或分力当做是物体受到的力  (3) 如果一个力的方向难以确定,可用假设法分析  (4) 物体的受力情况会随运动状态的改变而改变,必要时根据学过的知识通过计算确定  (5) 受力分析外部作用看整体,互相作用要隔离  考点四:正交分解法在力的合成与分解中的应用  1. 正交分解时建立坐标轴的原则  (1) 以少分解力和容易分解力为原则,一般情况下应使尽可能多的力分布在坐标轴上  (2) 一般使所要求的力落在坐标轴上  第四章 牛顿运动定律  考点一:对牛顿运动定律的理解  1. 对牛顿第一定律的理解  (1) 揭示了物体不受外力作用时的运动规律  (2) 牛顿第一定律是惯性定律,它指出一切物体都有惯性,惯性只与质量有关  (3) 肯定了力和运动的关系:力是改变物体运动状态的原因,不是维持物体运动的原因  (4) 牛顿第一定律是用理想化的实验总结出来的一条独立的规律,并非牛顿第二定律的特例  (5) 当物体所受合力为零时,从运动效果上说,相当于物体不受力,此时可以应用牛顿第一定律  2. 对牛顿第二定律的理解  (1) 揭示了a与F、m的定量关系,特别是a与F的几种特殊的对应关系:同时性、同向性、同体性、相对性、独立性  (2) 牛顿第二定律进一步揭示了力与运动的关系,一个物体的运动情况决定于物体的受力情况和初始状态  (3) 加速度是联系受力情况和运动情况的桥梁,无论是由受力情况确定运动情况,还是由运动情况确定受力情况,都需求出加速度  3. 对牛顿第三定律的理解  (1) 力总是成对出现于同一对物体之间,物体间的这对力一个是作用力,另一个是反作用力  (2) 指出了物体间的相互作用的特点:“四同”指大小相等,性质相等,作用在同一直线上,同时出现、消失、存在;“三不同”指方向不同,施力物体和受力物体不同,效果不同  考点二:应用牛顿运动定律时常用的方法、技巧  1. 理想实验法  2. 控制变量法  3. 整体与隔离法  4. 图解法  5. 正交分解法  6. 关于临界问题  处理的基本方法是:  根据条件变化或过程的发展,分析引起的受力情况的变化和状态的变化,找到临界点或临界条件(更多类型见错题本)  考点三:应用牛顿运动定律解决的几个典型问题  1. 力、加速度、速度的关系  (1) 物体所受合力的方向决定了其加速度的方向,合力与加速度的关系 ,合力只要不为零,无论速度是多大,加速度都不为零  (2) 合力与速度无必然联系,只有速度变化才与合力有必然联系  (3) 速度大小如何变化,取决于速度方向与所受合力方向之间的关系,当二者夹角为锐角或方向相同时,速度增加,否则速度减小  2. 关于轻绳、轻杆、轻弹簧的问题  (1) 轻绳  ① 拉力的方向一定沿绳指向绳收缩的方向  ② 同一根绳上各处的拉力大小都相等  ③ 认为受力形变极微,看做不可伸长  ④ 弹力可做瞬时变化  (2) 轻杆  ① 作用力方向不一定沿杆的方向  ② 各处作用力的大小相等  ③ 轻杆不能伸长或压缩  ④ 轻杆受到的弹力方式有:拉力、压力  ⑤ 弹力变化所需时间极短,可忽略不计  (3) 轻弹簧  ① 各处的弹力大小相等,方向与弹簧形变的方向相反  ② 弹力的大小遵循 的关系  ③ 弹簧的弹力不能发生突变  3. 关于超重和失重的问题  (1) 物体超重或失重是物体对支持面的压力或对悬挂物体的拉力大于或小于物体的实际重力  (2) 物体超重或失重与速度方向和大小无关。根据加速度的方向判断超重或失重:加速度方向向上,则超重;加速度方向向下,则失重  (3) 物体出于完全失重状态时,物体与重力有关的现象全部消失:  ① 与重力有关的一些仪器如天平、台秤等不能使用  ② 竖直上抛的物体再也回不到地面  ③ 杯口向下时,杯中的水也不流出