矢量网络分析仪怎么测延迟(矢量网络分析仪测时延)

海潮机械 2023-01-18 22:59 编辑:admin 284阅读

1. 矢量网络分析仪测时延

原理不难,说破了很简单。这类设备就是一个无线信号接收器,一个宽频的无线信号接收器。和收音机是一个原理。这个设备可接收的信号频段很宽,某些设备接收频段可以达到50MHz~12000MHz。这个频率范围除了卫星通信设备(卫星电话),基本上已经涵盖了所以无线传播设备的频率。例如最低检测频率低至50兆赫,这个频率比我们收听的调频广播频率还要低,这类低频通常是最简单音频监控,最高范围12G(12000MH),这就涵盖了目前民用通信所有的频段。例如蓝牙、WiFi、无绳电话、手机通信网络等。

这种设备检测的只是无线信号,但是接收到的无线信号并不能解调出来内容,而且也不需要解调传输内容,只要找到信号源就可以找到窃听偷拍设备,所以偷拍设备无论怎么加密传输,都可以被检测器检测到无线信号。但是这也是基于偷拍设备是无线传输的基础上,如果偷拍设备是插卡设备,类似行车记录仪,那么工作时是不会对外发射无线信号的,这类设备会有人定期去摘掉内存卡转移数据。例如宾馆酒店等房间。而商用的窃听监视设备很难做到定期去更换内存卡,并且数据延迟后“机密”也就没有价值了,所以办公室用此设备检测监控监听还是很奏效的。

2. 矢量网络分析仪时域功能

一、残留边带调制(VSB)

残留边带调制VSB是一种幅度调制法(AM),它是在双边带调制的基础上,通过设计适当的输出滤波器,使信号一个边带的频谱成分原则上保留,另一个边带频谱成分只保留小部分(残留)。该调制方法既比双边带调制节省频谱,又比单边带易于解调。

开通VIP

数字传输几种常用的调制方式

一、残留边带调制(VSB)

残留边带调制VSB是一种幅度调制法(AM),它是在双边带调制的基础上,通过设计适当的输出滤波器,使信号一个边带的频谱成分原则上保留,另一个边带频谱成分只保留小部分(残留)。该调制方法既比双边带调制节省频谱,又比单边带易于解调。

目前,美国A TSC数字电视地面传输采用的就是残留边带调制方式。根据调制电平级数的不同,VSB可分为4-VSB、8-VSB、16-VSB等。其中的数字表示调制电平级数。如8-VSB,表示有8种调制电平,即+7,+5,+3,+1,-1,-3,-5,-7。这样每个调制符号可携带3比特信息。

残留边带调制优点是技术成熟,便于实现,对发射机功放的峰均比要求低;不足的是抗多经和符号间干扰所需的均衡器相当复杂。

由于VSB抗多径,尤其是动态多径的能力差,迄今为止,A TSC只将其用于地面传输的固定接收和部分地区的便携接收。

二、编码正交频分复用调制(COFDM)

正交频分复用是一种多载波调制方式。编码的正交频分复用就是将经过信道编码后的数据符号分别调制到频域上相互正交的大量子载波上,然后将所有调制后信号叠加(复用),形成OFDM时域符号。

由于正交频分复用是采用大量(N个)子载波的并行传输,因此,在相等的传输数据率下,OFDM时域符号长度是单载波符号长度的N倍。这样其抗符号间干扰(ISI)的能力可显著提高,从而减轻对均衡的要求。

由于OFDM符号是大量相互独立信号的叠加,从统计意义上讲,其幅度近似服从高斯分布,这就造成OFDM信号的峰均功率比高。从而提高了对发射机功效线性度的要求,降低了发射机的功率效率。

三、正交幅度调制(QAM)

正交幅度调制(QAM)是一种矢量调制,它将输入比特先映射(一般采用格雷码)到一个复平面(星座)上,形成复数调制符号。然后将符号的I、Q分量(对应复平面的实部和虚部)采用幅度调制,分别对应调制在相互正交(时域正交)的两个载波(cos(wt)和sin(wt))上。这样与只作幅度调制(AM)相比,其频谱利用率高出一倍。

由于正交幅度调制,尤其是高维数的正交幅度调制,抗干扰能力差,接收时需要的信噪比高,故不宜用于条件恶劣的无线信道,而常用于有线信道。

3. 矢量网络分析仪实验报告

1、打开网络分析仪,然后按下‘PRESET’键,准备进行设置。

2、设置监视的频率范围:按下‘FREQ’键,按下‘CENTER’软键,使用数字键输入扫频段的中心频率,例如144,然后按下‘MHz’软键。

3、按下‘SPAN’软键,输入测量带宽,使用数字键输入‘10’,然后按下‘MHz’软键。

4、选择测量端口:按下‘CHAN 1’键,然后再按下‘TRANSMISSION’软键。

5、选择测量类型:按下‘FORMAT’键,然后从菜单选择‘SWR’。

6、按下‘REFERENCE POSITION’软键,在屏幕菜单上选择‘9’,然后按下‘ENTER’软键。

7、设置测量标记为113MHz和115MHz:按下‘MARKER’键,然后在屏幕菜单上输入‘1’。使用数字键盘输入‘113’,然后按下‘MHz’软键。然后在屏幕菜单上输入‘2’。使用数字键盘输入‘115’,然后按下‘MHz’软键。

8、在‘REFLECTION’菜单下,按下‘CAL’,然后选择‘ONE PORT’。

9、在网络分析仪的RF OUT端,安装开路校准设备。

10、按下‘MEASURE STANDARD’,等一会儿,直到出现‘CONNECT SHORT’为止。

11、在网络分析仪的RF OUT端,安装短路校准设备,按下‘MEASURE STANDARD’,等一会儿,直到出现‘CONNECT OPEN’为止。

12、在网络分析仪的RF OUT端,安装50Ω的终端电阻,按下‘LOAD’,等一会儿,直到出现‘CONNECT LOAD’为止。

13、将天线电缆连接到在网络分析仪的RF的输出端。

14、在网络分析仪上,按下‘MARKER’,显示测量标记。

15、在‘REFLECTION’菜单下,按下‘MEAS’,即可显示出天线在144MHz的驻波比。

4. 矢量网络分析仪测试时延

频谱仪:主要测试信号频谱,给出频率和功率信息。高端频谱仪还可以完成信号解调分析功能。

示波器:主要观测时域波形,可以测试时间、幅度、频率、相位参数及抖动和眼图等,也可以按照一定的规范完成HSS总线的一致性测试……

矢网:测试对象为物理网络/器件,比如滤波器、放大器、混频器等。其基本功能就是测试小信号S参数,以及衍生的相关参数(插损、回损、增益、群时延等),高端矢网还支持变频器件测试以及非线性失真测试等。

简言之,示波器和频谱仪测试对象为信号,而矢网测试对象为网络。

5. 矢量网络分析仪误差分析

矢量误差幅度(error vector magnitude,EVM)指的就是理论波形与接收到的实际波形之差,是平均误差矢量信号功率与平均参考信号功率之比的均方根值,一般GSM要求≤6%(RMS),WCDMA≤12.5%(RMS)。矢量误差幅度在一个给定时刻理想无误差基准信号与实际发射信号的向量差,能全面衡量调制信号的幅度误差和相位误差。

6. 矢量网络分析仪怎么测延时

debug 卡,就是电脑的主板诊断卡。 是利用主板加电自检post(power on seft test)所输出的信号,通过诊断卡读出主板现在的状态。

(post信号会停止在出故障的状态不动)然后通过编码,在两位或四位数码管上显示出结果,然后对照使用手册,查到的现在的状态。

根据不同接口,分pci、 isa、 并行口 根据 显示的数码管分 两位,四位显示 参见------ 主板故障诊断卡 概述 诊断卡的工作原理是利用主板中BIOS内部自检程序的检测结果,通过代码一一显示出来,结合本书的代码含义速查表就能很快地知道电脑故障所在。

尤其在PC机不能引导操作系统、黑屏、喇叭不叫时,使用本卡更能体现其便利,使您事半功倍。

BIOS在每次开机时,对系统的电路、存储器、键盘、视频部分、硬盘、软驱等各个组件进行严格测试,并分析硬盘系统配置,对已配置的基本I/O设置进行初始化,一切正常后,再引导操作系统。

其显著特点是以是否出现光标为分界线,先对关键性部件进行测试。

关键性部件发生故障强制机器转入停机,显示器无光标,则屏幕无任何反应。

然后,对非关键性部件进行测试,对有故障机器也继续运行,同时显示器无显示时,将本卡插入扩充槽内。

根据卡上显示的代码,参照你的机器是属于哪一种BIOS,再通过本书查出该代码所表示的故障原因和部位,就可清楚地知道故障所在. 指示灯功能速查表 灯名 中文意义 说 明 CLK 总线时钟 不论ISA或PCI只要一块空板(无CPU等)接通电源就应常亮,否则CLK信号坏。

BIOS 基本输入输出 主板运行时对BIOS有读操作时就闪亮。

IRDY 主设备准备好 有IRDY信号时才闪亮,否则不亮。

OSC 振荡 ISA槽的主振信号,空板上电则应常亮,否则停振。

FRAME 帧周期 PCI槽有循环帧信号时灯才闪亮,平时常亮。

RST 复位 开机或按了RESET开关后亮半秒钟熄灭必属正常,若不灭常因主板上的复位插针接上了加速开关或复位电路坏。

12V 电源 空板上电即应常亮,否则无此电压或主板有短路。 -12V 电源 空板上电即应常亮,否则无此电压或主板有短路。

5V 电源 空板上电即应常亮,否则无此电压或主板有短路。 -5V 电源 空板上电即应常亮,否则无此电压或主板有短路。

(只有ISA槽才有此电压) 3V3 电源 这是PCI槽特有的3.3V电压,空板上电即应常亮,有些有PCI槽的主板本身无此电压,则不亮。 故障代码含义速查表 查表必读:(注意事项)

1、特殊代码“00”和“FF”及其它起始码有三种情况出现:

①已由一系列其它代码之后再出现:“00”或“FF”,则主板OK。

②如果将CMOS中设置无错误,则不严重的故障不会影响BIOS自检的继续,而最终出现“00”或“FF”。

③一开机就出现“00”或“FF”或其它起始代码并且不变化则为板没有运行起来。

2、本表是按代码值从小到大排序,卡中出码顺序不定。

3、未定义的代码表中未列出。

4、对于不同BIOS(常用的AMI、Award、Phoenix)用同一代码所代表的意义有所不同,因此应弄清您所检测的电脑是属于哪一种类型的BIOS,您可查问你的电脑使用手册,或从主板上的BIOS芯片上直接查看,也可以在启动屏幕时直接看到。

5、有少数主板的PCI槽只有前一部分代码出现,但ISA槽则有完整自检代码输出。

且目前已发现有极个别原装机主板的ISA槽无代码输出,而PCI槽则有完整代码输出,故建议您在查看代码不成功时,将本双槽卡换到另一种插槽试一下。

另外,同一块主板的不同PCI槽,有的槽有完整代码送出,如DELL810主板只有靠近CPU的一个PCI槽有完整的代码显示,一直变化到“00”或“FF”,而其它槽走到“38”则不继续变化。 6、复位信号所需时间ISA与PCI不一定同步,故有可能ISA开始出代码,但PCI的复位灯还不熄,故PCI代码停在起始码上。 代码 Award BIOS Ami BIOS Phoenix BIOS或Tandy 3000 BIOS 00 . 已显示系统的配置;即将控制INI19引导装入。 . 01 处理器测试1,处理器状态核实,如果测试失败,循环是无限的。 处理器寄存器的测试即将开始,不可屏蔽中断即将停用。 CPU寄存器测试正在进行或者失败。 02 确定诊断的类型(正常或者制造)。如果键盘缓冲器含有数据就会失效。 停用不可屏蔽中断;通过延迟开始。 CMOS写入/读出正在进行或者失灵。 03 清除8042键盘控制器,发出TESTKBRD命令(AAH) 通电延迟已完成。 ROM BIOS检查部件正在进行或失灵。 04 使8042键盘控制器复位,核实TESTKBRD。 键盘控制器软复位/通电测试。 可编程间隔计时器的测试正在进行或失灵。 05 如果不断重复制造测试1至5,可获得8042控制状态。 已确定软复位/通电;即将启动ROM。 DMA初如准备正在进行或者失灵。 06 使电路片作初始准备,停用视频、奇偶性、DMA电路片,以及清除DMA电路片,所有页面寄存器和CMOS停机字节。 已启动ROM计算ROM BIOS检查总和,以及检查键盘缓冲器是否清除。 DMA初始页面寄存器读/写测试正在进行或失灵。 07 处理器测试2,核实CPU寄存器的工作。 ROM BIOS检查总和正常,键盘缓冲器已清除,向键盘发出BAT(基本保证测试)命令。 . 08 使CMOS计时器作初始准备,正常的更新计时器的循环。 已向键盘发出BAT命令,即将写入BAT命令。 RAM更新检验正在进行或失灵。 09 EPROM检查总和且必须等于零才通过。 核实键盘的基本保证测试,接着核实键盘命令字节。 第一个64K RAM测试正在进行。 0A 使视频接口作初始准备。 发出键盘命令字节代码,即将写入命令字节数据。 第一个64K RAM芯片或数据线失灵,移位。 0B 测试8254通道0。 写入键盘控制器命令字节,即将发出引脚23和24的封锁/解锁命令。 第一个64K RAM奇/偶逻辑失灵。 0C 测试8254通道1。 键盘控制器引脚23、24已封锁/解锁;已发出NOP命令。 第一个64K RAN的地址线故障。 0D 1、检查CPU速度是否与系统时钟相匹配。2、检查控制芯片已编程值是否符合初设置。3、视频通道测试,如果失败,则鸣喇叭。 已处理NOP命令;接着测试CMOS停开寄存器。 第一个64K RAM的奇偶性失灵 0E 测试CMOS停机字节。 CMOS停开寄存器读/写测试;将计算CMOS检查总和。 初始化输入/输出端口地址。 0F 测试扩展的CMOS。 已计算CMOS检查总和写入诊断字节;CMOS开始初始准备。 . 10 测试DMA通道0。 CMOS已作初始准备,CMOS状态寄存器即将为日期和时间作初始准备。 第一个64K RAM第0位故障。 11 测试DMA通道1。 CMOS状态寄存器已作初始准备,即将停用DMA和中断控制器。 第一个64DK RAM第1位故障。 12 测试DMA页面寄存器。 停用DMA控制器1以及中断控制器1和2;即将视频显示器并使端口B作初始准备。 第一个64DK RAM第2位故障。 13 测试8741键盘控制器接口。 视频显示器已停用,端口B已作初始准备;即将开始电路片初始化/存储器自动检测。 第一个64DK RAM第3位故障。 14 测试存储器更新触发电路。 电路片初始化/存储器处自动检测结束;8254计时器测试即将开始。 第一个64DK RAM第4位故障。 15 测试开头64K的系统存储器。 第2通道计时器测试了一半;8254第2通道计时器即将完成测试。 第一个64DK RAM第5位故障。 16 建立8259所用的中断矢量表。 第2通道计时器测试结束;8254第1通道计时器即将完成测试。 第一个64DK RAM第6位故障。 17 调准视频输入/输出工作,若装有视频BIOS则启用。 第1通道计时器测试结束;8254第0通道计时器即将完成测试。 第一个64DK RAM第7位故障。 18 测试视频存储器,如果安装选用的视频BIOS通过,由可绕过。 第0通道计时器测试结束;即将开始更新存储器。 第一个64DK RAM第8位故障。 19 测试第1通道的中断控制器(8259)屏蔽位。 已开始更新存储器,接着将完成存储器的更新。 第一个64DK RAM第9位故障。 1A 测试第2通道的中断控制器(8259)屏蔽位。 正在触发存储器更新线路,即将检查15微秒通/断时间。 第一个64DK RAM第10位故障。 1B 测试CMOS电池电平。 完成存储器更新时间30微秒测试;即将开始基本的64K存储器测试。 第一个64DK RAM第11位故障。 1C 测试CMOS检查总和。 . 第一个64DK RAM第12位故障。 1D 调定CMOS配置。 . 第一个64DK RAM第13位故障。 1E 测定系统存储器的大小,并且把它和CMOS值比较。 . 第一个64DK RAM第14位故障。 1F 测试64K存储器至最高640K。 . 第一个64DK RAM第15位故障。 20 测量固定的8259中断位。 开始基本的64K存储器测试;即将测试地址线。 从属DMA寄存器测试正在进行或失灵。 21 维持不可屏蔽中断(NMI)位(奇偶性或输入/输出通道的检查)。 通过地址线测试;即将触发奇偶性。 主DMA寄存器测试正在进行或失灵。 22 测试8259的中断功能。 结束触发奇偶性;将开始串行数据读/写测试。 主中断屏蔽寄存器测试正在进行或失灵。 23 测试保护方式8086虚拟方式和8086页面方式。 基本的64K串行数据读/写测试正常;即将开始中断矢量初始化之前的任何调节。 从属中断屏蔽存器测试正在进行或失灵。 24 测定1MB以上的扩展存储器。 矢量初始化之前的任何调节完成,即将开始中断矢量的初始准备。 设置ES段地址寄存器注册表到内存高端。 25 测试除头一个64K之后的所有存储器。 完成中断矢量初始准备;将为旋转式断续开始读出8042的输入/输出端口。 装入中断矢量正在进行或失灵。 26 测试保护方式的例外情况。 读出8042的输入/输出端口;即将为旋转式断续开始使全局数据作初始准备。 开启A20地址线;使之参入寻址。 27 确定超高速缓冲存储器的控制或屏蔽RAM。 全1数据初始准备结束;接着将进行中断矢量之后的任何初始准备。 键盘控制器测试正在进行或失灵。 28 确定超高速缓冲存储器的控制或者特别的8042键盘控制器。 完成中断矢量之后的初始准备;即将调定单色方式。 CMOS电源故障/检查总和计算正在进行。 29 . 已调定单色方式,即将调定彩色方式。 CMOS配置有效性的检查正在进行。 2A 使键盘控制器作初始准备。 已调定彩色方式,即将进行ROM测试前的触发奇偶性。 置空64K基本内存。 2B 使磁碟驱动器和控制器作初始准备。 触发奇偶性结束;即将控制任选的视频ROM检查前所需的任何调节。 屏幕存储器测试正在进行或失灵。 2C 检查串行端口,并使之作初始准备。 完成视频ROM控制之前的处理;即将查看任选的视频ROM并加以控制。 屏幕初始准备正在进行或失灵。 2D 检测并行端口,并使之作初始准备。 已完成任选的视频ROM控制,即将进行视频ROM回复控制之后任何其他处理的控制。 屏幕回扫测试正在进行或失灵。 2E 使硬磁盘驱动器和控制器作初始准备。 从视频ROM控制之后的处理复原;如果没有发现EGA/VGA就要进行显示器存储器读/写测试。 检测视频ROM正在进行。 2F 检测数学协处理器,并使之作初始准备。 没发现EGA/VGA;即将开始显示器存储器读/写测试。 . 30 建立基本内存和扩展内存。 通过显示器存储器读/写测试;即将进行扫描检查。 认为屏幕是可以工作的。 31 检测从C800:0至EFFF:0的选用ROM,并使之作初始准备。 显示器存储器读/写测试或扫描检查失败,即将进行另一种显示器存储器读/写测试。 单色监视器是可以工作的。 32 对主板上COM/LTP/FDD/声音设备等I/O芯片编程使之适合设置值。 通过另一种显示器存储器读/写测试;却将进行另一种显示器扫描检查。 彩色监视器(40列)是可以工作的。 33 . 视频显示器检查结束;将开始利用调节开关和实际插卡检验显示器的关型。 彩色监视器(80列)是可以工作的。 34 . 已检验显示器适配器;接着将调定显示方式。 计时器滴答声中断测试正在进行或失灵。 35 . 完成调定显示方式;即将检查BIOS ROM的数据区。 停机测试正在进行或失灵。 36 . 已检查BIOS ROM数据区;即将调定通电信息的游标。 门电路中A-20失灵。 37 . 识别通电信息的游标调定已完成;即将显示通电信息。 保护方式中的意外中断。 38 . 完成显示通电信息;即将读出新的游标位置。 RAM测试正在进行或者地址故障>FFFFH。 39 . 已读出保存游标位置,即将显示引用信息串。 . 3A . 引用信息串显示结束;即将显示发现

7. 矢量网络分析仪测回波损耗

频域测量:

1、按MODE键,用“∧”或“∨”键选中“频率—驻波比”或“频率—回波损耗”,按ENTER键确认;

2、按Ferq键,可以在25MHz到4GHz频率范围内设定对S331D校准的频率范围;

3、按F1——设起始频率(如800MHz),按F2——设终止频率(如2500MHz);。

8. 矢量网络分析仪工作频率

矢量网络分析仪发信号的原理是通过传输和反射对激励波作出响应,发出信号,被测器件的频率响应可以通过信号源扫频来获取矢量的频率。

当扫描的频率范围设置为零时, 网络分析仪使用方法如下:输出信号为点频 CW 信号,矢量网络分析仪内部功分器和定向耦合器分别完成对被测件输入信号和反射信号的提取。