二极管最大rms电压(rm2a二极管)

海潮机械 2022-12-21 10:36 编辑:admin 264阅读

1. rm2a二极管

b2100是是肖特基晶体二极管,比普通整流二极管正向压降低、速度快,常用于各种电源整流电路中。

b2100二极管参数:

正向浪涌电流(Ifsm):60A

反向峰值电压(Vrrm):100V

反向电压(Vr):100V

正向电流(If ):2A

正向电压(Vf):840mV

反向漏电流(Ir):500μA

工作温度(Tj):-40℃~+125℃

封装/外壳:DO-15

2. 二极管rms

BOOST升压电路参数计算

1. 占空比Vi *Ton/L=(Vo-Vi)*Toff/LD = (Vo-Vi)/VoD—占空比2. 电感选择dIL= Vi*Ton/LdIL=0.2IL_ avg=0.2IinIin=Vo*Io/ViIL_avg = IinIL_peak = 1.1IinIL_rms = ILavg*(1+0.22/12)0.5L电感量的选取原则使电感纹波电流为电感电流的20%(可根据应用改变)dIL—电感纹波电流峰峰值IL_avg—电感电流平均值 IL_peak—电感峰值电流 IL_rms—电感电流有效值2. 肖特基二极管选择Id_peak = 1.1IinVrd = VoId_peak—续流二极管峰值电流Vrd—续流二级管反向耐压(Ton期间)3. 开关管Isw_peak = 1.1IinVsw = VoIsw_peak—开关管峰值电流Vsw_peak—开关管耐压(Toff期间)4. 电容Icin_rms = dIL/120.5Ico_rms = [Io2D+(Iin-Io)2(1-D)]0.5电容选取:耐压、纹波电流、电容量Icin_rms—输入电容的纹波电流有效值Ico_rms—

BOOST升压电路参数计算

1. 占空比

Vi *Ton/L=(Vo-Vi)*Toff/L

D = (Vo-Vi)/Vo

D—占空比

2. 电感选择

dIL= Vi*Ton/L

dIL=0.2IL_ avg=0.2Iin

Iin=Vo*Io/Vi

IL_avg = Iin

第 1 页

IL_peak = 1.1Iin

IL_rms = ILavg*(1+0.22/12)0.5

L电感量的选取原则使电感纹波电流为电感电流的20%(可根据应用改变)

dIL—电感纹波电流峰峰值

IL_avg—电感电流平均值 

IL_peak—电感峰值电流 

IL_rms—电感电流有效值

2. 肖特基二极管选择

3. rm3a二极管参数

1N5408属于大功率整流二极管,最大反向耐压1000V,最大整流电流3A,1000V时最大反向漏电电流5μA(标准温度下)。 考虑安全系数,可用于380V,2A的整流电路中。

1n5408二极管参数

二极管类型:标准恢复

电压, Vrrm:1000V

电流:3A

正向电压最大:1.2V

电流最大:200A

封装类型:DO-201AD

正向电压:1.2V

电流:200A

4. rm3a二极管代换

ru3am二极管的主要参数是3A/400V,功率为600w,可以用和它参数相同的二极管8N687来代换。

5. 二极管的rms是什么意思

由于MOSFET的结构,通常它可以做到电流很大,可以到上KA,但耐压能力没有IGBT强。

2、IGBT可以做很大功率,电流和电压都可以,就是一点频率不是太高,目前IGBT硬开关速度可以到100KHZ,那已经是不错了。不过相对于MOSFET的工作频率还是九牛一毛,MOSFET可以工作到几百KHZ,上MHZ,以至几十MHZ。

3、就其应用:根据其特点MOSFET应用于开关电源,镇流器,高频感应加热;高频逆变焊机;通信电源等等高频电源领域;IGBT集中应用于焊机,逆变器,变频器,电镀电解电源,超音频感应加热等领域。

开关电源(SMPS) 的性能在很大程度上依赖于功率半导体器件的选择,即开关管和整流器。

虽然没有万全的方案来解决选择IGBT还是MOSFET的问题,但针对特定SMPS应用中的IGBT 和MOSFET进行性能比较,确定关键参数的范围还是能起到一定的参考作用。

本文将对一些参数进行探讨,如硬开关和软开关ZVS(零电压转换) 拓扑中的开关损耗,并对电路和器件特性相关的三个主要功率开关损耗—导通损耗、传导损耗和关断损耗进行描述。此外,还通过举例说明二极管的恢复特性是决定MOSFET 或 IGBT导通开关损耗的主要因素,讨论二极管恢复性能对于硬开关拓扑的影响。

导通损耗

除了IGBT的电压下降时间较长外,IGBT和功率MOSFET的导通特性十分类似。由基本的IGBT等效电路(见图1)可看出,完全调节PNP BJT集电极基极区的少数载流子所需的时间导致了导通电压拖尾出现。

这种延迟引起了类饱和效应,使集电极/发射极电压不能立即下降到其VCE(sat)值。这种效应也导致了在ZVS情况下,在负载电流从组合封装的反向并联二极管转换到IGBT的集电极的瞬间,VCE电压会上升。IGBT产品规格书中列出的Eon能耗是每一转换周期Icollector与VCE乘积的时间积分,单位为焦耳,包含了与类饱和相关的其他损耗。其又分为两个Eon能量参数,Eon1和Eon2。Eon1是没有包括与硬开关二极管恢复损耗相关能耗的功率损耗;Eon2则包括了与二极管恢复相关的硬开关导通能耗,可通过恢复与IGBT组合封装的二极管相同的二极管来测量,典型的Eon2测试电路如图2所示。IGBT通过两个脉冲进行开关转换来测量Eon。第一个脉冲将增大电感电流以达致所需的测试电流,然后第二个脉冲会测量测试电流在二极管上恢复的Eon损耗。

在硬开关导通的情况下,栅极驱动电压和阻抗以及整流二极管的恢复特性决定了Eon开关损耗。对于像传统CCM升压PFC电路来说,升压二极管恢复特性在Eon (导通) 能耗的控制中极为重要。除了选择具有最小Trr和QRR的升压二极管之外,确保该二极管拥有软恢复特性也非常重要。软化度,即tb/ta比率,对开关器件产生的电气噪声和电压尖脉冲有相当的影响。某些高速二极管在时间tb内,从IRM(REC)开始的电流下降速率(di/dt)很高,故会在电路寄生电感中产生高电压尖脉冲。这些电压尖脉冲会引起电磁干扰(EMI),并可能在二极管上导致过高的反向电压。

在硬开关电路中,如全桥和半桥拓扑中,与IGBT组合封装的是快恢复管或MOSFET体二极管,当对应的开关管导通时二极管有电流经过,因而二极管的恢复特性决定了Eon损耗。所以,选择具有快速体二极管恢复特性的MOSFET十分重要。不幸的是,MOSFET的寄生二极管或体二极管的恢复特性比业界目前使用的分立二极管要缓慢。因此,对于硬开关MOSFET应用而言,体二极管常常是决定SMPS工作频率的限制因素。

一般来说,IGBT组合封装二极管的选择要与其应用匹配,具有较低正向传导损耗的较慢型超快二极管与较慢的低VCE(sat)电机驱动IGBT组合封装在一起。相反地,软恢复超快二极管,可与高频SMPS2开关模式IGBT组合封装在一起。

除了选择正确的二极管外,设计人员还能够通过调节栅极驱动导通源阻抗来控制Eon损耗。降低驱动源阻抗将提高IGBT或MOSFET的导通di/dt及减小Eon损耗。Eon损耗和EMI需要折中,因为较高的di/dt会导致电压尖脉冲、辐射和传导EMI增加。为选择正确的栅极驱动阻抗以满足导通di/dt 的需求,可能需要进行电路内部测试与验证,然后根据MOSFET转换曲线可以确定大概的值 (见图3)。

假定在导通时,FET电流上升到10A,根据图3中25℃的那条曲线,为了达到10A的值,栅极电压必须从5.2V转换到6.7V,平均GFS为10A/(6.7V-5.2V)=6.7mΩ。

公式1 获得所需导通di/dt的栅极驱动阻抗

把平均GFS值运用到公式1中,得到栅极驱动电压Vdrive=10V,所需的 di/dt=600A/μs,FCP11N60典型值VGS(avg)=6V,Ciss=1200pF;于是可以计算出导通栅极驱动阻抗为37Ω。由于在图3的曲线中瞬态GFS值是一条斜线,会在Eon期间出现变化,意味着di/dt也会变化。呈指数衰减的栅极驱动电流Vdrive和下降的Ciss作为VGS的函数也进入了该公式,表现具有令人惊讶的线性电流上升的总体效应。

同样的,IGBT也可以进行类似的栅极驱动导通阻抗计算,VGE(avg) 和GFS可以通过IGBT的转换特性曲线来确定,并应用VGE(avg)下的CIES值代替Ciss。计算所得的IGBT导通栅极驱动阻抗为100Ω,该值比前面的37Ω高,表明IGBT GFS较高,而CIES较低。这里的关键之处在于,为了从MOSFET转换到IGBT,必须对栅极驱动电路进行调节。

传导损耗需谨慎

在比较额定值为600V的器件时,IGBT的传导损耗一般比相同芯片大小的600 V MOSFET少。这种比较应该是在集电极和漏极电流密度可明显感测,并在指明最差情况下的工作结温下进行的。例如,FGP20N6S2 SMPS2 IGBT 和 FCP11N60 SuperFET均具有1℃/W的RθJC值。图4显示了在125℃的结温下传导损耗与直流电流的关系,图中曲线表明在直流电流大于2.92A后,MOSFET的传导损耗更大。

不过,图4中的直流传导损耗比较不适用于大部分应用。同时,图5中显示了传导损耗在CCM (连续电流模式)、升压PFC电路,125℃的结温以及85V的交流输入电压Vac和400 Vdc直流输出电压的工作模式下的比较曲线。图中,MOSFET-IGBT的曲线相交点为2.65A RMS。对PFC电路而言,当交流输入电流大于2.65A RMS时,MOSFET具有较大的传导损耗。2.65A PFC交流输入电流等于MOSFET中由公式2计算所得的2.29A RMS。MOSFET传导损耗、I2R,利用公式2定义的电流和MOSFET 125℃的RDS(on)可以计算得出。把RDS(on)随漏极电流变化的因素考虑在内,该传导损耗还可以进一步精确化,这种关系如图6所示。

一篇名为“如何将功率MOSFET的RDS(on)对漏极电流瞬态值的依赖性包含到高频三相PWM逆变器的传导损耗计算中”的IEEE文章描述了如何确定漏极电流对传导损耗的影响。作为ID之函数,RDS(on)变化对大多数SMPS拓扑的影响很小。例如,在PFC电路中,当FCP11N60 MOSFET的峰值电流ID为11A——两倍于5.5A (规格书中RDS(on) 的测试条件) 时,RDS(on)的有效值和传导损耗会增加5%。

在MOSFET传导极小占空比的高脉冲电流拓扑结构中,应该考虑图6所示的特性。如果FCP11N60 MOSFET工作在一个电路中,其漏极电流为占空比7.5%的20A脉冲 (即5.5A RMS),则有效的RDS(on)将比5.5A(规格书中的测试电流)时的0.32欧姆大25%。

公式2 CCM PFC电路中的RMS电流

式2中,Iacrms是PFC电路RMS输入电流;Vac是PFC电路RMS输入电压;Vout是直流输出电压。

在实际应用中,计算IGBT在类似PFC电路中的传导损耗将更加复杂,因为每个开关周期都在不同的IC上进行。IGBT的VCE(sat)不能由一个阻抗表示,比较简单直接的方法是将其表示为阻抗RFCE串联一个固定VFCE电压,VCE(ICE)=ICE×RFCE+VFCE。于是,传导损耗便可以计算为平均集电极电流与VFCE的乘积,加上RMS集电极电流的平方,再乘以阻抗RFCE。

图5中的示例仅考虑了CCM PFC电路的传导损耗,即假定设计目标在维持最差情况下的传导损耗小于15W。以FCP11N60 MOSFET为例,该电路被限制在5.8A,而FGP20N6S2 IGBT可以在9.8A的交流输入电流下工作。它可以传导超过MOSFET 70% 的功率。

虽然IGBT的传导损耗较小,但大多数600V IGBT都是PT (穿透) 型器件。PT器件具有NTC (负温度系数)特性,不能并联分流。或许,这些器件可以通过匹配器件VCE(sat)、VGE(TH) (栅射阈值电压) 及机械封装以有限的成效进行并联,以使得IGBT芯片们的温度可以保持一致的变化。相反地,MOSFET具有PTC (正温度系数),可以提供良好的电流分流。

关断损耗 —问题尚未结束

在硬开关、钳位感性电路中,MOSFET的关断损耗比IGBT低得多,原因在于IGBT 的拖尾电流,这与清除图1中PNP BJT的少数载流子有关。图7显示了集电极电流ICE和结温Tj的函数Eoff,其曲线在大多数IGBT数据表中都有提供。 这些曲线基于钳位感性电路且测试电压相同,并包含拖尾电流能量损耗。

图2显示了用于测量IGBT Eoff的典型测试电路, 它的测试电压,即图2中的VDD,因不同制造商及个别器件的BVCES而异。在比较器件时应考虑这测试条件中的VDD,因为在较低的VDD钳位电压下进行测试和工作将导致Eoff能耗降低。

降低栅极驱动关断阻抗对减小IGBT Eoff损耗影响极微。如图1所示,当等效的多数载流子MOSFET关断时,在IGBT少数载流子BJT中仍存在存储时间延迟td(off)I。不过,降低Eoff驱动阻抗将会减少米勒电容CRES和关断VCE的dv/dt造成的电流注到栅极驱动回路中的风险,避免使器件重新偏置为传导状态,从而导致多个产生Eoff的开关动作。

ZVS和ZCS拓扑在降低MOSFET和IGBT的关断损耗方面很有优势。不过ZVS的工作优点在IGBT中没有那么大,因为当集电极电压上升到允许多余存储电荷进行耗散的电势值时,会引发拖尾冲击电流Eoff。ZCS拓扑可以提升最大的IGBT Eoff性能。正确的栅极驱动顺序可使IGBT栅极信号在第二个集电极电流过零点以前不被清除,从而显著降低IGBT ZCS Eoff 。

MOSFET的Eoff能耗是其米勒电容Crss、栅极驱动速度、栅极驱动关断源阻抗及源极功率电路路径中寄生电感的函数。该电路寄生电感Lx (如图8所示) 产生一个电势,通过限制电流速度下降而增加关断损耗。在关断时,电流下降速度di/dt由Lx和VGS(th)决定。如果Lx=5nH,VGS(th)=4V,则最大电流下降速度为VGS(th)/Lx=800A/μs。

总结

在选用功率开关器件时,并没有万全的解决方案,电路拓扑、工作频率、环境温度和物理尺寸,所有这些约束都会在做出最佳选择时起着作用。

在具有最小Eon损耗的ZVS 和 ZCS应用中,MOSFET由于具有较快的开关速度和较少的关断损耗,因此能够在较高频率下工作。

对硬开关应用而言,MOSFET寄生二极管的恢复特性可能是个缺点。相反,由于IGBT组合封装内的二极管与特定应用匹配,极佳的软恢复二极管可与更高速的SMPS器件相配合。

后语

MOSFE和IGBT是没有本质区别的,人们常问的“是MOSFET好还是IGBT好”这个问题本身就是错误的。至于我们为何有时用MOSFET,有时又不用MOSFET而采用IGBT,不能简单的用好和坏来区分,来判定,需要用辩证的方法来考虑这个问题。

6. rm3a二极管

BT33是单结晶体管,也叫双基二极管(它有两个基极B1、B2,一个发射极E)。

用于张驰振荡电路,定时电压读出电路中,它具有频率易调、温度稳定性好等

双基极二极管是具有两个基极和一个发射极的三端负阻半导体器件。他只有一个PN结,

7. rm1c二极管参数

你的是品牌MIC的整流二极管,型号可能是:1N4001-1N4007.规格是DO-41的。

管体不是有标志吗?看看就知道了啊!

8. rm2a二极管参数

属于大功率整流二极管,最大反向耐压1000V,最大整流电流3A,1000V时最大反向漏电电流5μA(标准温度下)。 考虑安全系数,可用于380V,2A的整流电路中。

1n5408二极管参数

二极管类型:标准恢复

电压, Vrrm:1000V

电流, If 平均:3A

正向电压 Vf 最大:1.2V

电流, Ifs 最大:200A

封装形式:DO-201AD

针脚数:2

封装类型:DO-201AD

正向电压, 于If:1.2V

电流, Ifsm:200A

结温, Tj 最高:150°C

表面安装器件:轴向引线

9. rm13a二极管

在修理中常见的电磁炉大致分为两类:

由LM339(四电压比较器)输出脉冲信号。

1: 触发部分由正负两组电源,管子用PNP\NPN组成,类似这种电路,后级大多是用大功率管多个复合而成,组成高压开关部分,在代换中,前一个用带阻尼的行管替代即可。后几个则很难找到特性一致的管子,解决的办法是在散热器安装孔允许的情况下改用大电流的管子以减少数量,金属封装得如:BUS13A等,塑封的如:BU2525/BU2527/BU2532/D3998一类,用两个就可以。

2:功控管用IGBT绝缘栅开关器件;

这些机器特征是不用双电源触发,只有+5V和+12V,LM339通过触发集成块TA8316带动IGBT

这种情况下只能用此一类的管子代替,损坏程度大致为,只有管子坏,换上即可。其次是整流桥同时损坏,(一般是烧半壁),在其次是触发集成块TA8316坏,连带LM339N一起损坏的很少见。

对于高压模块,由于这方面的参数手册很少,希望大家搜集转贴,以便代换时参考。

不能贸然更换,最好有示波器先测其G极波形及幅值(没有的话用万用表测此点直流电压应在1-2.5伏之间变化).接上线盘前要确定其它几路小电源供电正常.

2.1.2 IGBT

绝缘栅双极晶体管(Iusulated Gate Bipolar Transistor)简称IGBT,是一种集BJT的大电流密度和MOSFET等电压激励场控型器件优点于一体的高压、高速大功率器件。

目前有用不同材料及工艺制作的IGBT, 但它们均可被看作是一个MOSFET输入跟随一个双极型晶体管放大的复合结构。

IGBT有三个电极(见上图), 分别称为栅极G(也叫控制极或门极) 、集电极C(亦称漏极) 及发射极E(也称源极) 。

从IGBT的下述特点中可看出, 它克服了功率MOSFET的一个致命缺陷, 就是于高压大电流工作时, 导通电阻大, 器件发热严重, 输出效率下降。

IGBT的特点:

1.电流密度大, 是MOSFET的数十倍。

2.输入阻抗高, 栅驱动功率极小, 驱动电路简单。

3.低导通电阻。在给定芯片尺寸和BVceo下, 其导通电阻Rce(on) 不大于MOSFET的Rds(on) 的10%。

4.击穿电压高, 安全工作区大, 在瞬态功率较高时不会受损坏。

5.开关速度快, 关断时间短,耐压1kV~1.8kV的约1.2us、600V级的约0.2us, 约为GTR的10%,接近于功率MOSFET, 开关频率直达100KHz, 开关损耗仅为GTR的30%。

IGBT将场控型器件的优点与GTR的大电流低导通电阻特性集于一体, 是极佳的高速高压半导体功率器件。

目前458系列因应不同机种采了不同规格的IGBT,它们的参数如下:

(1) SGW25N120----西门子公司出品,耐压1200V,电流容量25℃时46A,100℃时25A,内部不带阻尼二极管,所以应用时须配套6A/1200V以上的快速恢复二极管(D11)使用,该IGBT配套6A/1200V以上的快速恢复二极管(D11)后可代用SKW25N120。

(2) SKW25N120----西门子公司出品,耐压1200V,电流容量25℃时46A,100℃时25A,内部带阻尼二极管,该IGBT可代用SGW25N120,代用时将原配套SGW25N120的D11快速恢复二极管拆除不装。

(3) GT40Q321----东芝公司出品,耐压1200V,电流容量25℃时42A,100℃时23A, 内部带阻尼二极管, 该IGBT可代用SGW25N120、SKW25N120, 代用SGW25N120时请将原配套该IGBT的D11快速恢复二极管拆除不装。

(4) GT40T101----东芝公司出品,耐压1500V,电流容量25℃时80A,100℃时40A,内部不带阻尼二极管,所以应用时须配套15A/1500V以上的快速恢复二极管(D11)使用,该IGBT配套6A/1200V以上的快速恢复二极管(D11)后可代用SGW25N120、SKW25N120、GT40Q321, 配套15A/1500V以上的快速恢复二极管(D11)后可代用GT40T301。

(5) GT40T301----东芝公司出品,耐压1500V,电流容量25℃时80A,100℃时40A, 内部带阻尼二极管, 该IGBT可代用SGW25N120、SKW25N120、GT40Q321、 GT40T101, 代用SGW25N120和GT40T101时请将原配套该IGBT的D11快速恢复二极管拆除不装。

(6) GT60M303 ----东芝公司出品,耐压900V,电流容量25℃时120A,100℃时60A, 内部带阻尼二极管。

GT40T101----东芝公司出品,耐压1500V,电流容量25℃时80A,100℃时40A,内部不带阻尼二极管,所以应用时须配套15A/1500V以上的快速恢复二极管(D11)使用,该IGBT配套6A/1200V以上的快速恢复二极管(D11)后可代用SGW25N120、SKW25N120、GT40Q321, 配套15A/1500V以上的快速恢复二极管(D11)后可代用GT40T301。”

GT40T101内部不带阻尼二极管,为何我买的带阻尼二极管,是假的吗?????可装机用1个多月没坏呀(25元呢

顺便说明:我说的用G25N120代换加阻尼管,不是说此管内部不带阻尼管,(实际上它内部已附带阻尼管,)只是我在维修时先加上试机正常后再去掉,为的是防止机子还有其它问题而引起烧了它从而避免过大的损失,装上此管再并是一支阻尼后要是还有其它问题一般只会烧外加阻尼而不会烧功率管.

电磁炉维修经验(一)

一、 PD16F/16Y/13J 老版(大单机68H1908)

1、现象:上电长鸣,指示灯全亮

方法:更换R53:1/6W-10K为1/6W-4.7K或1/4W-4.7K

二、 PD16F/16Y/16J-2002(小单片机 1202)

1、现象:正常电压开机长鸣

方法:更换R15:1W-330K±1%

2、不检锅

方法:拨掉排线(功率板到控制板),测量R16:1W-330K±1%;R17、R18:1W-240K±1%是否正常,更换不正常电阻。

如无法测,则直接更换R16:1W-330K±1%,不正常再更换R17、R18:1W-240K±1%。

3、上电无反应:

测量功率板桥堆、保险管是否损坏,如桥堆损坏而IGBT未短路则更换桥堆保险管。

三、 PSD18C/D/E

1、出现E07、E08

方法:更换R310:1W-330K±1%

2、不检锅

方法:拨掉排线测量R300:1W-330K±1%;R305、R304:1W-240K±1%,更换不正常电阻,如无法测量则直接更换R300:1W-330K±1%;还不正常,则更换R304、R305:1W-240K±1%

3、上电无反应

方法:同第二大点中第3小点

电磁炉维修经验(二)

1.电磁炉无论有什么故障,在更换元件后,一定不要急于接上线盘试机,否则会引起烧坏IGBT和保险管,甚至整流桥。应该在不接线盘的情况下,通电测试各点电压,比如5V、12V、20V(有的18V、22V),和驱动电路输出的波型(正常是方波),也可以用数字万用表20V档测试(正常电压不断波动)。因为一般电磁炉都有锅具检测,大概30秒左右,要测驱动输出要在开机的30秒内,看不清楚可关机再开,检测正常后再接上线盘即可。

2.电磁炉坏之后,检测电路不要一开始就怀疑芯片有问题(95%以上芯片不会的故障),就算芯片有问题都要到生产该电磁炉的厂家才有,市场买不到,市场上的型号相同都不能代换。

3.通电后报警关机,这类问题比较多。有的厂家设有故障代码,参照使用说明可逐一解决。如果没故障代码显示,应检查锅底温度、锅具、IGBT温度检测电路。

电磁炉常用整流桥型号及参数

RBV-2006/20A/600V

RBV2506/25A/600V

K15T120此管是带阻的,可用H20T120代,或用其它带阻的IGBT代均可。比如40N150,25G120等都可使用G40N150D就可以看看这些如何:

SGW25N120D

K25T120

G25N120D

FGA25N120

MGY25N120D

IRG30B120

G18N120BNAF

SIGC25T120C

SG25N120

参数如下:

(1) SGW25N120----西门子公司出品,耐压1200V,电流容量25℃时46A,100℃时25A,内部不带阻尼二极管,所以应用时须配套6A/1200V以上的快速恢复二极管(D11)使用,该IGBT配套6A/1200V以上的快速恢复二极管(D11)后可代用SKW25N120。

(2) SKW25N120----西门子公司出品,耐压1200V,电流容量25℃时46A,100℃时25A,内部带阻尼二极管,该IGBT可代用SGW25N120,代用时将原配套SGW25N120的D11快速恢复二极管拆除不装。

(3) GT40Q321----东芝公司出品,耐压1200V,电流容量25℃时42A,100℃时23A, 内部带阻尼二极管, 该IGBT可代用SGW25N120、SKW25N120, 代用SGW25N120时请将原配套该IGBT的D11快速恢复二极管拆除不装。

(4) GT40T101----东芝公司出品,耐压1500V,电流容量25℃时80A,100℃时40A,内部不带阻尼二极管,所以应用时须配套15A/1500V以上的快速恢复二极管(D11)使用,该IGBT配套6A/1200V以上的快速恢复二极管(D11)后可代用SGW25N120、SKW25N120、GT40Q321, 配套15A/1500V以上的快速恢复二极管(D11)后可代用GT40T301。

(5) GT40T301----东芝公司出品,耐压1500V,电流容量25℃时80A,100℃时40A, 内部带阻尼二极管, 该IGBT可代用SGW25N120、SKW25N120、GT40Q321、 GT40T101, 代用SGW25N120和GT40T101时请将原配套该IGB

电磁炉用功率管的型号,代换,参数

GT40Q321, FGL40N150D, FGL60N170D, FGA25N120, SK25N120, G40N150D, FGA25N135, 1MBH25D--120,GP20B120UD--E, IXGH20N120BDI,

以上功率管内部都带阻尼管,耐压都在1200V以上电流在20A以上只要电流相差不多都可以互相代换。

SGW25N120,K15T120。。。。。。。。。。。。。

以上的管子内部不带阻尼,如果要代换一上功率管时可以在电路板上安装2个以上的阻尼二极管耐压1200V以上,电流在8A以上

我们换IGBT都用20T120的通带(小的TGBT)大的用GT40T101就行了

用快恢复二极管撒,我们换IGBT都用20T120的通带(小的TGBT)大的用GT40T101就行了

阻尼管二极管可选用:BY459

大量维修实践表明,电磁炉(灶)内的部分元器件因工作温度较高,工作电流较大,电压较高

等,其故障或损坏概率也较高。其中的场效应功率管损坏率最高。但由于商业竞争激烈,一般都不

随机附带图纸,加之电磁炉所采用的场效应功率管一般均为较新产品,这便给维修带来不便和困

难。下面笔者根据汇集来的相关资料,提供几种常用电磁炉场效应功率管及代换资料供参考。

电磁炉一般均采用N型沟道功率场效应管,其相关参数为BVCBO≥1600V,BVCEO≥1000V,PCM≥

100W,ICM≥7A,HFE≥40。常用的电磁炉用场效应管内部带阻尼二极管的型号有GT40N150D、

GT40T301、SEC·G40N150D、ZON120ND、GT40T101、SQD35JA等。

内部不带阻尼二极管的型号有BT40T101、SGL40N150/150D等。在维修代换时,若采用不带阻尼

二极管的功率场效应管,应在D、S极间加接一只阻尼二极管,该二极管必须是快恢复型阻尼二极

管,其耐压应≥1500V。加接时正极接S极,负极接D极即可。参考型号如S5J53、BY4591500等。

在负载电磁线圈和功率管之间串一只100W的灯泡再通电试机,可以防止烧管

电磁炉常见故障现象

故障现象产品原因维修方法

1.不开机(按电源键指示灯不亮。)

(1) 按键不良 检查并更换按键板

(2) 电源线配线松脱 重接

(3) 电源线不通电 重接或换新

(4) 保险丝熔断 更换

(5) 功率晶体IGBT坏 更换

(6) 共振电容C103坏 更换

(7) 阴尼二极体 检查并更换

(8) 变压器坏,没18V输出 检查并更换

(9) 基板组件坏 更换

2.置锅,指示灯亮,但不加热

(1) 线盘没锁好 锁好线盘

(2) 稳压二极管ZD101坏 换稳压二极管ZD101

(3) 基板组件坏 换基板组件

(2)

(3)

3.灯不亮,风扇自转。

(1) LED插槽插线不良 重新插接或换LED板

(2) 稳压二极管ZD2坏 换稳压二极管ZD2

(3) 基板组件坏 换基板组件

4.加热,但指示灯不亮。

(1) LED二极管坏 换LED二极管

(2) LED基板组件坏 换LED基板组件

5.未置锅,指示灯亮,不加热。

(1) 热敏电阻配线松动或损坏 重新插接或换热敏电阻组件

(2) 集成块LM339坏或集成块TA8316坏 换LM339或TA8316

(3) 变压器插接不良 检查或换主控IC

(4) 基板组件坏 换基板组件

6.功率无变化

(1) 可调电阻 换可调电阻

(2) 加热/定温电阻用错或短路 检查加热/定温电阻

(3) 主控IC坏 检查或换主控IC

(4) 基板组件坏 换基板或换基板组件

7.蜂鸣器长鸣

(1) 热开关坏/热敏电阻坏,主控IC坏 换/热开关/热敏电阻/主控IC

(2) 振荡子坏,变压器坏 换振荡子,检查或更换变压器

(3) 基板组件坏 检查或更换基板组件

8.锅具正常,但闪烁并发出“叮叮”响

(1)锅具检测处于临界点(1)更换R104阻值

9.置锅,灯闪烁

(1) 比流器CT坏 换比流器CT

(2) 锅具不对,非标准锅具 用正确锅具

(3) IC1/IC6/R501可调电阻坏 检查对应器件

一.电路板烧IGBT或保险丝的维修程序

电流保险丝或IGBT烧坏,不能马上换上该零件,必须确认下列其它零件是在正常状态时才能进行更换,否则,IGBT和保险丝又会烧坏。

1. 目视电流保险丝是否烧断

2. 检测IGBT是否击穿: 用数字万用表二极管档测量IGBT的“E”;“C”;“G”三极间是否击穿。

A:“E”极与“G”极;“C”极与“G”极,正反测试均不导通(正常)。

B:万用表红笔接”E“极,黑笔接“C”极有0.4V~0.7V左右的电压降,内部有阻尼二极管。(型号为GT40T101三极全不通,需外加阻尼二极管)。

3.测量互感器是否断脚,正常状态如下: 用万用表电阻档测量互感器次级电阻约80Ω;初极为0Ω。

4. 整流桥是否正常(用二极管档测试): A:万用表红笔接“-”,黑笔接“+”有0.9V左右的电压降,调反无显示。 B:万用表红笔接“-”,黑笔分别接两个输入端均有0.5V左右的电压降,调反无显示。 C:万用表黑笔接“+”,红笔分别接两个输入端均有0.5V左右的电压降,调反无显示。

正极

5.检查电容C301;C302;C303;是否受热损坏。(如果损坏已变形或烧熔)

6.检测芯片8316是否击穿:

测量方法:用万用表测量8316引脚,要求1和2;1和4;7和2;7和4之间不能短路。

TA8316S

1 2 3 4 5 6 7

7.IGBT处热敏开关绝缘保护是否损坏。

二、按键动作不良

1.测量CPU口线是否击穿:

用万用表二极管档测量CPU极与接地端,均有0.7V左右的电压降,万用表红笔接“地”;黑笔接“CPU每一极口线”。

三、功率不能达到到要求

1.线圈盘短路:测试线圈盘的电感量:PSD系数为L=157±5μH,PD系列为L=140±5μH。

2.锅具与线圈盘距离是否正常。

3.锅具是否是指定的锅具。

4. 检查各元气件是否松动,是否齐全。

四、装配后不良状况的检查:

1. 不加热:检查互感器是否断脚。

2. 插电后长鸣:检查端子是否接插良好。

3. 无法开机:检查热敏电阻端子是否接插良好。

4. 无小物检知(不报警):检查电阻R301~R307是否正常。

R301~R302为68KΩ

R303~R306为130KΩ

R307为3.0KΩ

5. 风扇不转;检查三极管Q2是否烧坏。(一般烧坏三极管引脚跟部已发黄;也可用万用表二极管档测量)

前言随着生活水平的提高,老百姓对安全卫生的炊事用具逐渐接受,电磁炉也进入了千家万户。为了使美的服务网点能够利用电磁炉的散件,快速准确的将电磁炉维修好,特编写了《电磁炉的原理与维修》,内容中以PD16为模板,着重分析了电磁炉的原理,希望大家能够自己通过原理来分析故障,从而起到举一反三的目的。

第一章 电磁炉的工作原理

1、电磁炉的工作原理概述当电磁炉在正常工作时,电磁炉线盘上的线圈产生的交变磁场在锅具底部反复切割变化使锅具底部产生环状电流(涡流),并利用小电阻大电流的短路热效应产生热量。

2、PD16电磁炉电原理图

3、PD16电磁炉的工作方框图

第二章 电磁炉主要部件功能

1、陶瓷板:进口高级耐热晶化陶瓷板。

2、高压主基板:构成主电流回路。

3、低压主基板:电脑控制功能。

4、LED线路板:显示工作状态和传递操作指令。

5、线盘:将高频交变电流转换成交变磁场( PAN)。

6、风扇组件:散热辅助元件(FAN)。

7、IGBT:通过低电流信号、控制大电流的通断(IGBT)。

8、桥式整流块:将交流电源转换为直流电源(BD101)。

9、热敏电阻件:将热量信号传递到控制电路。

10、热开关组件:感应IGBT工作温度,从而保护IGBT由于过热损坏。

第三章 电磁炉集成块功能

1、C80C49-143A:中央处理器集成快(Ic1)。

2、SN7407N:高压输出缓冲器/驱动器(Ic2)。

3、HD74LS145:四—十线译码器/驱动器(Ic4)。

4、LM339:低功耗、低失调电压比较器(Ic5、IC6)。

5、TA8316S:驱动器(Ic3)。

第四章 电磁炉的工作原理(PD16)

电磁炉220v工频交流由AC IN插口接入,通过保险丝F101防止内部电路的过载及短路。VA为并联压敏电路,防止外部供电电压过高,往往为烧毁自身来保护后级电路的安全。C101为滤波电容,容量为2UF。C101后级为大功率桥式整流块,可将前级的220v工频交流电整流为脉动直流电,脉动直流电通过扼流圈和C102的平滑滤波,将相对平稳的直流电供向下级PAN电磁线盘,PAN线盘与C103振荡电容组成LC振荡电路,从而在线盘上产生交变磁场。 PAN电磁线盘的后级为T102电流取样变压器,通过T102次级将电流信号传递给电压比较器LM339进行检测。 T102的后级为高压保护二极D,作用为保护IGBT,防止反向高压击穿IGBT。IGBT的控制极由驱动器TA8316S驱动,TA8316S输出14KHz频率的脉冲,根据TA8316S输出的脉宽来调整IGBT通断时间的长短,从而达到调整功率的要求。 LM339为电压比较器,PD16使用两块LM339:一块为IC5,主要功能为锅具检测、温度检测;另一块为IC6,主要功能为电流检测,电压检测。IC5、IC6两个LM339比较器都将检测信号反馈到TA8316S驱动器上,从而达到调整功率的要求。线盘中间的热敏利电阻RT通过热量变化转换为电平变化,然后通过Q601三极管推动将信号传递到TA8316S,从而调整功率的大小,以达到调整锅具的温度。 IGBT散热铝块上固定有温度开关K1,当IGBT过热时,温度开关K1的通断状态发生变化,从而接通IC1集成块①脚,通过①脚电平的高低变化,从而使IC1集成块④脚复位停机。风扇的电源控制由IC4的第⑦脚输出高电平至三极管Q703,从而使Q703导通,风扇通过12V直流运转。控制电路的电源主要由T101变压器的初级接入,次级输出连接有三组串联稳压电路。一组通过ZD204、C207、R204、Q203形成+5V电压,主要供给集成块IC1供电;一组通过ZD201、C203、R203、Q201形成+24V电压,主要供给集成IC3供电。另一组通过ZD203、C205、R203、Q202、R202形成+12V、+10V电源,+12V电源主要供给风扇,+10V主要供给IC6、Q301、ICS、Q602、Q601、Q501供电。

第五章 故障分析及维修方法

现象1、开机烧保险。

①首先将电磁线盘的接线脚断开换上保险管,测量电容C102两端电压,一般桥式整流的直流输出电压为220V-300V,如无电压或继续烧保险,判断为桥式整流块坏。分析原因:如果整流桥击穿,则220V交流直接短路。

②C102两端有电压,判断为IGBT坏,换上后故障排除。分析原因:C102两端有电压,说明桥式整流的直流输出正常,如果IGBT的两个输出脚击穿,则相当于直流短路。

③桥流桥及IGBT都没有坏,但依然烧保险,IA8316S集成块坏,换上后故障排除。分析原因:由于TA8316S输出的脉冲角度过大,导致IGBT出现过载现象

2、风机不工作

①拨掉风扇FAN插线排,检测有无12V供电,如有,则风扇电机坏。

分析原因:电源正常,通常风扇电机为短路或断路。

②FAN插线排无12V电压,驱动三极管Q703发射极击穿,换上Q703,故障排除。

分析:当Q703都没有坏,集成块IC4坏,换上IC4集成块,故障排除。 ③风扇电机及Q703都没有坏,集成电路块IC4坏,换上IC4集成块,故障解除。分析原因:如果集成电路块IC4的第7脚无高电平输出,那么Q703的发射极没有偏置电压,Q703的集成极依然无法导通,供电处于断路状态。现象3、开机操作显示均正常,但不加热。

①测量TA8316S的第③脚有无18V电压,如无,可检查Q201有无击穿、ZD201有无击穿,如有击穿换上后故障排除。分析原因:如果TA8316S的第③脚无18V电压,故障点应在供电电源串联稳压电路,所以必须先检查构成串联稳压电路的基本部件。

②TA8316S的第③脚有18V电压,故障应在IC3集成块TA8316S,换上后故障排除。

分析原因:LED板显示及操作正常,说明电脑控制电路基本正常,不烧保险,说明高压板基本正常,只是由于TA8316S无脉冲输出至IGBT控制极,IGBT无法导通。现象4、开机后,面板灯一直闪烁。 ① 晶振坏,换后,故障排除。

分析原因:晶振坏,导致CPU中央处理器无时钟频率输入,从而使整个IC1中央处理器失控。

美的电磁炉维修方案

一、 PD16F/16Y/13J 老版(大单机68H1908)

1、现象:上电长鸣,指示灯全亮

方法:更换R53:1/6W-10K为1/6W-4.7K或1/4W-4.7K

二、 PD16F/16Y/16J-2002(小单片机 1202)

1、现象:正常电压开机长鸣

方法:更换R15:1W-330K±1%

2、不检锅

方法:拨掉排线(功率板到控制板),测量R16:1W-330K±1%;R17、R18:1W-240K±1%是否正常,更换不正常电阻。

如无法测,则直接更换R16:1W-330K±1%,不正常再更换R17、R18:1W-240K±1%。

3、上电无反应:

测量功率板桥堆、保险管是否损坏,如桥堆损坏而IGBT未短路则更换桥堆保险管。

三、 PSD18C/D/E

1、出现E07、E08

方法:更换R310:1W-330K±1%

2、不检锅

方法:拨掉排线测量R300:1W-330K±1%;R305、R304:1W-240K±1%,更换不正常电阻,如无法测量则直接更换R300:1W-330K±1%;还不正常,则更换R304、R305:1W-240K±1%

3、上电无反应

方法:同第二大点中第3小点

IGBT管好坏的检测

IGBT管的好坏可用指针万用表的Rxlk挡来检测,或用数字万用表的“二极管”挡来测量PN结正向压降进行判断。检测前先将IGBT管三只引脚短路放电,避免影响检测的准确度;然后用指针万用表的两枝表笔正反测G、e两极及G、c两极的电阻,对于正常的IGBT管(正常G、C两极与G、c两极间的正反向电阻均为无穷大;内含阻尼二极管的IGBT管正常时,e、C极间均有4kΩ正向电阻),上述所测值均为无穷大;最后用指针万用表的红笔接c极,黑笔接e极,若所测值在3.5kΩl左右,则所测管为含阻尼二极管的IGBT管,若所测值在50kΩ左右,则所测IGBT管内不含阻尼二极管。对于数字万用表,正常情况下,IGBT管的C、C极问正向压降约为0.5V。

综上所述,内含阻尼二极管的IGBT管检测示意图如图所示,表笔连接除图中所示外,其他连接检测的读数均为无穷大。

如果测得IGBT管三个引脚间电阻均很小,则说明该管已击穿损坏;若测得IGBT管三个引脚间电阻均为无穷大,说明该管已开路损坏。实际维修中IGBT管多为击穿损坏。