顶升桥梁千斤顶厂家(桥梁顶升设备)

海潮机械 2023-01-04 21:35 编辑:admin 268阅读

1. 桥梁顶升设备

  1. 搭设支架、施工平台  1) 桥台支座更换利用桥台作为施工平台,对空间不够部位采用支架措施,以确保施工的安全实施。  2) 对于桥墩支座的更换,采用特制钢挂架固定于墩身或盖梁上作为施工平台。  2. 台帽、盖梁顶面清理  1) 清理台帽或盖梁顶面沉积的土石块及砼块,必要时可采用钢纤对砼垃圾进行清理。  2) 用钢丝刷或对台帽或盖梁顶面进行清洁,保证支座更换时作业面干净整洁。  3) 清理伸缩缝内沉积的垃圾和杂物,以防止顶升内梁体间互相挤压。  3. 支座调查与复检  1) 对要更换的支座部位进行确认和检查,现场记录支座位置、编号、病害情况,并拍照记录,照片应拍摄完整的施工工序即原状、更换过程及更换完成情况,妥善保存检查记录,作为交工文件之一。  2) 复核原支座型号与设计院提供的型号是否一致,并根据支座的设计承载力确定顶升重量及千斤顶的型号和数量。  3) 测量梁底标高,并根据设计图纸提供的梁底标高进行复核,并将复核情况详细记录并妥善保存,作为交工文件之一。  4) 根据测量记录确定支座垫石顶面标高的调整高度。对于需要将普通支座更换为四氟滑板支座的情况,应根据要更换的四氟滑板支座的型号、高度确定支座垫石改造后的顶面标高,以保证支座更换后桥面标高符合设计要求。  4. 千斤顶、百分表安放与设置  1) 千斤顶数量应与每个桥台下的支座数量相同。  2) 布设百分表:为精确测量顶升高度并在梁体顶升过程中控制梁体姿态,需在梁台两侧布设百分表,顶升过程中应有专人负责记录百分表读数。  5. 顶升系统调试  6. 试顶  1) 试顶前的检查  千斤顶安装是否垂直牢固;  影响顶升的设施是否已全部拆除;  顶升部分结构与其它结构的连接是否已全部去除。  2) 顶升系统启动后现场各组人员各就各位,密切观察桥梁是否有异常状况出现,设备、仪表是否正常工作,显示读数是否在合理范围内。  3) 控制顶升速度不超过1mm/分钟,最大顶升高度不超过5mm。  4) 顶升就位后,持荷10分钟,观察梁体及设备状况。如有异常情况,应立即回油、落梁,问题解决后再进行试顶,直至梁体受力及设备运行正常。  5) 顶升就位后,根据控制系统显示的顶升重量复核支座型号及各支座承受的压力,如有异常,则应考虑调整支座型号。  6) 试顶正常后,应平稳落梁。  7. 梁体同步顶升  1) 顶升过程中以每顶升2mm为一步,分级顶升,各顶高差严格控制在0.5mm范围内,全程采用位移传感器监测梁体顶升位移情况。实时监测整个千斤顶间位移传感器升量高差,若高差超过控制值时,必须进行适时调整后才进入下一个顶升周期,达到同步顶升的目的。  2) 箱梁二侧布设百分表监测箱梁转动的情况,同时也作为位移传感器的对比验证数据,箱梁每顶升一级百分表读数一次。观测人员随时根据监测值反馈致控制室,指导操作人员进行操作。  3) 顶升时梁每升高5~6mm,临时支撑加垫一块钢板。  4) 同步顶升高度为可拆除既有支座和安装新支座所需的工作空间,约为10~15mm。  5) 顶升到位后将梁体由千斤顶转落至临时支撑上。  8. 支座更换  1) 用铁勾或人工取出旧支座,如旧支座已与垫石粘结而较难取出可用钢纤、铁锤敲击松动后取出。取出旧支座前应拍照记录其缺陷状况。   2) 用人工配合钢丝刷清洁支座垫石表面,如有支座下钢板,则应打磨去除铁锈。  3) 测量垫石顶面标高,如顶不平整,则用环氧砂浆抹平。垫石顶面如需加高,则应采用环氧砂浆加高至设计标高并抹平;垫石顶面如需降低,则应钢纤凿除部分砼至设计标高并用环氧砂浆抹平。支座垫石顶面高程允许偏差不超过±2mm,顶面四角高差不超过1mm,轴线偏位不超过5mm。  4) 在支承垫石上根据设计图纸标出支座位置中心线,同时在橡胶支座上也标出十字交叉中心线,将橡胶支座安放在垫石上,使支座的中心线与墩台的设计位置中心线重合,支座就位准确。  5) 所有支座更换完毕后,再对安装的新支座进行全面检查,确保各项指标满足设计及规范要求。 9. 落梁  1) 落梁前在梁体两侧的桥台或桥墩挡块与梁体间加塞木板,防止落梁时梁体发生水平位移。  2) 开启同步顶升系统,平稳降落梁体。  3) 梁体就位后检查支座上下钢板与垫石、梁底之间的密贴情况,应尽量保证支座上下面全部密贴。如果支座出现偏心受压、不均匀支承或脱空的现象,则应重新顶升梁体,并在支座下钢板下加设抄垫钢板进行微调(厚度规格为1mm~3mm),直至支座上下面全部密贴。  4) 支座检查合格后拆除千斤顶、临时支承钢板等顶升设备。  5) 取出梁体与挡板间木板,清理施工废物及垃圾。

2. 桥梁顶升技术

桥梁顶升技术采用整体液压同步升高方案,也就是利用原有灌注桩承重,不破坏原桥面铺装层、栏杆扶手、人行道、梁板间的连接等,先用“液升”装置整体顶住桥梁上部结构,然后截断各墩、台帽梁下的立柱,再进行操作“液升”装置,使该桥整体升高到设计高度,最后接长立柱钢筋立模浇灌二期砼。-------------------------------------------------------------------------------实例:杭州九堡大桥的建设理念与技术创新(图)《中国公路》  傅翼俞菊虎  杭州九堡大桥采用了新型组合结构桥梁型式,创新了顶推施工工法,体现了全寿命经济性理念,作为我国第一座全桥采用组合结构的越江桥梁,旨在通过建设理念与技术创新,为推动我国组合结构桥梁的发展做出贡献。  工程概况  杭州九堡大桥(即钱江八桥)是钱塘江(杭州段)规划建设的十座大桥之一,位于彭埠大桥(即钱江二桥)下游5公里,下沙大桥(即钱江六桥)上游8公里处,全长1855米,是杭州新一轮城市总体规划“两绕三纵五横”城市快速路网系统中东边一纵的主要组成部分。  九堡大桥道路等级为城市快速路,设置双向六车道,设计行车速度80公里/小时,设计汽车荷载为城-A级。标准段桥面宽度31.5米,主桥根据结构需要加宽至37.7米,行车道单向净宽11.75米,两侧各设置3米宽慢行道。全桥孔跨布置为:55+2×85米+90(北侧引桥)+3×210米(主航道桥)+90+9×85+55米(南侧引桥)。主航道桥与非航道引桥分别采用大跨度连续组合拱桥与连续组合箱梁桥,是国内第一座全桥采用组合结构的大型越江桥梁。项目概算投资为9.7亿元,工程于2009年3月16日正式开工建设,计划于2011年12月30日前完成主体工程竣工验收。  建设理念  钱塘江的自然条件决定了不可能在这里追求桥梁跨度的世界纪录,而着眼于桥梁科技的发展,杭州希望建成一座技术创新并且全寿命经济的大桥。  正因确立了这样的建设目标,在桥型方案选择过程中,设计师们对各个比选方案从结构合理性、施工难易度、工程经济性、环境匹配度以及景观效果等方面进行了综合分析。混凝土结构桥梁具有取材方便、造价低等优点,但存在自重大、工期长、质性脆、抗裂性差等缺点;钢结构桥梁具有自重轻、工期短、塑性与韧性好等优点,但存在造价高、抗火性差、耐腐蚀性差等缺点;而组合结构可以充分利用两种结构优点、弥补各自缺点,实现节约钢材、发挥混凝土性能,降低造价,施工方便,易于养护等特点,使结构具有全寿命经济性。经过综合的对比分析而最终采用了组合结构桥梁方案。  技术特点  主航道桥  基础和下部结构。主桥下部结构采用V形薄壁墩,C50混凝土,V墩顶纵向横梁配预应力平衡水平力,墩身线形顺接梁上拱轴曲线。对应主梁截面V墩分为两个独立V撑,两个独立V撑通过统一的V墩台座与单幅承台相接。主桥各墩承台均为哑铃型截面,C35混凝土,承台顶面标高均为+1.0米。桩基础采用18根2米直径钻孔灌注桩,主桥各墩平均桩长95米。  上部结构。主桥上部结构采用结合梁-钢拱组合体系拱桥,支承跨径组合为188米+22米+188米+22米+188米,是连续结构(如图2所示)。拱桥主梁为等截面钢-混凝土结合梁结构。钢拱跨径188米,拱肋系统由主拱肋、副拱肋、主副拱肋之间的横向连杆以及拱顶横撑等构件组成。  主拱肋外倾12°,立面矢高43.784米,是主要承重构件。副拱肋轴线为空间曲线,立面矢高33米。主副拱肋之间的横向连杆采用圆钢管,间距8.5米。  组合桥面系全宽37.7米,横向两侧窄箱型主纵梁间距27.6米、梁高4.5米,纵梁之间设有间距4.25米的“工”字型钢横梁。人行道为钢结构,置于主纵梁外侧,其横向加劲肋与“工”字型钢横梁对应设置。桥面板采用C50混凝土、厚26c米,桥面板无预应力束,纵向采用允许桥面板开裂、控制裂缝宽度的原则设计。钢主纵梁内部设系杆索。拱桥吊杆间距8.5米,吊杆上端锚固于主拱肋,下端锚固于钢主纵梁,全桥共设57对吊杆。  施工方案。桥梁下部结构钻孔灌注桩施工采用旋转钻机成孔,主桥桩基利用钻孔平台辅助施工,承台采取钢套箱围堰施工,V型主墩采用劲性骨架配平衡架法分节对称施工。  主桥上部结构施工,按照常规施工方案,需在江上搭设临时墩和支架,进行桥面系与拱肋安装,施工难度大、造价高、对通航影响大,而且质量、安全隐患多。为了优化施工方案,主桥采用了拱梁整体顶推的施工方法,即钢拱与钢梁在岸上先期组拼一体,配合钢梁与拱肋之间的临时杆件共同受力,进行整体顶推。每拼装完成一孔顶推一孔,直至3孔主拱全部顶推到位。然后按照顺序张拉吊杆并拆除临时杆件,铺设预制桥面板并浇注接缝混凝土,完成桥面施工。  主桥顶推施工时,210米跨间仅设置1座临时墩,这在世界上属首次。  非航道引桥  基础和下部结构。引桥下部结构采用单体板式空心墩,承台均采用倒角矩形形式,桩基采用5根1.8米直径钻孔灌注桩,桩长90~95米。  上部结构。引桥以85米为标准跨径,上部结构采用大悬臂的等高度单箱单室钢-混凝土组合结构连续箱梁。主梁结构断面由混凝土桥面板及整体成槽形的钢梁组成。槽形钢梁整体上由顶板、腹板、底板、空腹式横梁、实腹式横梁、腹板加劲肋、底板加劲肋组成。槽形钢梁顶面宽度13.1米,底板宽度11.05米,以4.25米的标准间距设置横隔系,在支承处箱梁内侧由实腹横隔板取代横隔系,在横梁位置设置撑杆及横向连接系统,横向连接系统总宽度31.5米,在空腹式横梁位置设置外侧挑臂撑杆及内部撑杆支撑桥面板系统。  预制桥面板采用C50混凝土,横向由3块变厚度预制板组成,内侧中板变厚范围0.26~0.3米,支点厚0.3米,结构中心线处厚0.26米,外侧边板变厚范围0.22~0.3米。桥面板横向以2道腹板上翼缘为分割点,纵向以4.25米间距的钢横隔系为分割点。组合箱梁的桥面板横向配有体内预应力,纵向采用允许桥面板开裂、控制裂缝宽度的原则设计,桥面板内无纵向预应力。  引桥桥面宽度31.5米,悬臂超过8米,梁中心线高4.5米。整幅梁31.5米的宽度居于同类桥梁前列,更是国内同类桥梁的首次实践。  施工方案。引桥钢结构也采用顶推法施工。两岸均需要在岸侧搭设拼装平台,南北两侧引桥由各自岸侧开始顶推,以一孔梁长为单位逐孔进行,直至一联多跨钢梁全部顶推到位。再按照顺序铺设预制桥面板并浇注接缝混凝土,完成主体结构的施工。预制桥面板的安装采用专用桁车与运梁台车配合进行,专用桁车与运梁台车的轨道设置在对应钢梁腹板处。  引桥顶推施工时,85米跨间不设置临时墩,这在国内尚属首次。  技术创新结构体系。主桥采用跨度3×210米结合梁-钢拱组合体系连续拱桥,桥面系为钢梁与混凝土桥面板组合结构;引桥采用85米标准跨径大悬臂的等高度单箱单室钢-混凝土组合结构连续箱梁桥;是国内第一座全桥采用组合结构的大型越江桥梁。  引桥采用大悬臂的整幅桥面,桥面宽31.5米。整幅梁31.5米的宽度居于同类桥梁前列,更是国内同类桥梁的首次实践。  施工方法。非航道引桥的85米跨连续组合箱梁,在国内首次采用无临时墩顶推施工方案,相关实践经验将具有示范意义与重要参考价值。  主桥设计采用了顶推施工方案,并且210米跨间仅设置1座临时墩,这无疑是一次新的尝试,为拱桥的技术发展提供了有益的经验。  施工装备。主航道拱桥开发了大吨位多点同步顶推设备系统,非航道引桥开发了超长联多点连续顶推施工设备系统。九堡大桥的顶推施工不同于国内常用的推动或拖动梁体在支点上滑移的方法,顶推时不必对主体钢结构进行加强,通过千斤顶的同步平衡控制技术保证结构受力的均匀与可靠,施工方法经济性好。  主航道拱桥研制了超高大型桥梁施工龙门吊,实现了超高、超宽与大吊重情况下的设备投入的经济性、质量可靠性及施工安全性;非航道连续组合箱梁桥研制了大尺度桥面板快速安装与运吊设备,为桥面板实现吊装快捷施工和准确安装定位提供了保证。

3. 桥梁同步顶升设备厂家

二环东路每个标段工程造价都需要上亿元,建设一联高架桥就需700万元。燕山立交采用顶升技术至少比拆掉重建节约三分之一的成本。之所以将匡山立交的桥面进行顶升,而不是新建连接高架桥面,就是因为顶升可以降低建设成本,将原桥面顶升能够比新建桥面节省大约七百万元的费用。

4. 桥梁顶升设备有哪些

本实用新型是一种用于滑撬输送系统中改变输送方向的顶升旋转机构。其结构是由支脚、旋转芯轴、旋转架、导轮组件、顶升架、顶升气缸、底脚、旋转气缸、限位块、旋转轨道、电气检测装置和限位装置组成;底脚和顶升架直接与顶升气缸连接组成顶升部分结构,支脚直接插入输送撬体的底部的四个定位孔,导轮组件、旋转芯轴、支脚和旋转架通过螺栓依次连接组成旋转部分结构,旋转气缸直接安装在顶升架上。导轮组件通过螺栓直接与旋转架连接,旋转轨道接在顶升架上,顶升检测开关和旋转检测开关通过开关支架分别装在顶升旋转位置和限位装置上。优点:结构简单,紧凑。旋转体采用导向轮运行平稳。采用气动元件,限位装置和电气检测开关检测从而实现动作准确,灵敏,可靠,适应工业自动化高节拍生产。  可用于,建筑物,桥梁,厂房等原构件顶升、提升使用高度或增加层数项目。

5. 桥梁顶升设备型号图片

注意以下要点:

1 反力体系应将荷载均匀传递给桥墩;

2 安放千斤顶的位置应考虑力的平衡如果反力体系设置在桥墩上应考虑需顶升梁的情况,如果梁比较轻,墩可以承受较大弯矩,可以在墩侧安置反力体系,反力体系应与墩紧密连接,可多增设连接点,分散内力。如果顶升点设在墩顶,则要设置有效的垫层,确保反力梁的内力均匀的分散到墩顶。