rtk测量与全站仪(RTK与全站仪)

海潮机械 2022-12-29 16:48 编辑:admin 127阅读

1. RTK与全站仪

全站仪(Total station)是全站型电子速测仪的简称,是集水平角、垂直角、距离(斜距、平距)、高差测量功能于一体的测绘仪器系统。

RTK测量相对于全站仪来说在大范围的控制测量更省时省力,并且对控制点不一定要求互相通视,其授时定位功能也更为优越。

但RTK测量基于GPS卫星测量的,所以必须保持对卫星通视条件下才能作业,在高楼树下等遮挡环境不能达到固定解,定位精度也会下降。

2. rtk与全站仪联合应用

中文名称:对中杆;

英文名称:centeringrod;

1.测量。全站仪的棱镜杆,rtk的移动站杆。

2.放样。

其检校有两种方法,1支架对中杆水泡下面挂用垂球,用眼睛看着杆和垂球线平行了,把水泡调中间就好了。这种方法最简单。精度差点。2用经纬仪90度左右打个垂直,把水泡调中间。其实第一种方法足够用了,本来对中杆的精度就不高。

3. rtk与全站仪联合作业有哪些优点

RTK技术的优点

1、作业效率高

在一般的地形地势下,高质量的RTK设站一次即可测完5km半径的测区,大大减少了传统测量所需的控制点数量和测量仪器的“搬站”次数,仅需一人操作,每个放样点只需要停留1~2秒,就可以完成作业。在公路路线测量中,每小组(3~4人)每天可完成中线测量6~8km,在中线放样的同时完成中桩抄平工作。若用其进行地形测量,每小组每天可以完成0.8~1.5km2的地形图测绘,其精度和效率是常规测量所无法比拟的。

2、定位精度高,没有误差积累

只要满足RTK的基本工作条件,在一定的作业半径范围内(一般为5km),RTK的平面精度和高程精度都能达到厘米级,且不存在误差积累。

3、全天候作业

RTK技术不要求两点间满足光学通视,只需要满足“电磁波通视和对空通视的要求”,因此和传统测量相比,RTK技术作业受限因素少,几乎可以全天候作业。

4、RTK作业自动化、集成化程度高

RTK可胜任各种测绘外业。流动站配备高效手持操作手簿,内置专业软件可自动实现多种测绘功能,,减少人为误差,保证了作业精度。

RTK技术的缺点

虽然GPS技术有着常规仪器所不能比拟的优点,但经过多年的工程实践证明,GPS RTK技术存在以下几方面不足。

1、受卫星状况限制

GPS系统的总体设计方案是在1973年完成的,受当时的技术限制,总体设计方案自身存在很多不足。随着时间的推移和用户要求的日益提高,GPS卫星的空间组成和卫星信号强度都不能满足当前的需要,当卫星系统位置对美国是最佳的时候,世界上有些国家在某一确定的时间段仍然不能很好地被卫星所覆盖。例如在中、低纬度地区每天总有两次盲区,每次20~30分钟,盲区时卫星几何图形结构强度低,RTK测量很难得到固定解。同时由于信号强度较弱,对空遮挡比较严重的地方,GPS无法正常应用。

2、受电离层影响

白天中午,受电离层干扰大,共用卫星数少,因而初始化时间长甚至不能初始化,也就无法进行测量。根据我们的实际经验,每天中午12点~13点,RTK测量很难得到固定解。

3、受数据链电台传输距离影响

数据链电台信号在传输过程中易受外界环境影响,如高大山体、建筑物和各种高频信号源的干扰,在传输过程中衰减严重,严重影响外业精度和作业半径。另外,当RTK作业半径超过一定距离时,测量结果误差超限,所以RTK的实际作业有效半径比其标称半径要小,工程实践和专门研究都证明了这一点。

4、受对空通视环境影响

在山区、林区、城镇密楼区等地作业时,GPS卫星信号被阻挡机会较多,信号强度低,卫星空间结构差,容易造成失锁,重新初始化困难甚至无法完成初始化,影响正常作业。

5、受高程异常问题影响

RTK作业模式要求高程的转换必须精确,但我国现有的高程异常分布图在有些地区,尤其是山区,存在较大误差,在有些地区还是空白,这就使得将GPS大地高程转换至海拔高程的工作变得比较困难,精度也不均匀,影响RTK的高程测量精度。

6、不能达到100%的可靠度

RTK确定整周模糊度的可靠性为95~99%,在稳定性方面不及全站仪,这是由于RTK较容易受卫星状况、天气状况、数据链传输状况影响的缘故。(俊鹰无人机)

4. rtk与全站仪地物点精度分析

1、作业效率高

在一般的地形地势下,高质量的RTK设站一次即可测完5km半径的测区,大大减少了传统测量所需的控制点数量和测量仪器的“搬站”次数,仅需一人操作,每个放样点只需要停留1~2秒,就可以完成作业。在公路路线测量中,每小组(3~4人)每天可完成中线测量6~8km,在中线放样的同时完成中桩抄平工作。若用其进行地形测量,每小组每天可以完成0.8~1.5km2的地形图测绘,其精度和效率是常规测量所无法比拟的。

2、定位精度高,没有误差积累

只要满足RTK的基本工作条件,在一定的作业半径范围内(一般为5km),RTK的平面精度和高程精度都能达到厘米级,且不存在误差积累。

3、全天候作业

RTK技术不要求两点间满足光学通视,只需要满足“电磁波通视和对空通视的要求”,因此和传统测量相比,RTK技术作业受限因素少,几乎可以全天候作业。

4、RTK作业自动化、集成化程度高

RTK可胜任各种测绘外业。流动站配备高效手持操作手簿,内置专业软件可自动实现多种测绘功能,,减少人为误差,保证了作业精度。

RTK技术的缺点

虽然GPS技术有着常规仪器所不能比拟的优点,但经过多年的工程实践证明,GPS RTK技术存在以下几方面不足。

1、受卫星状况限制

GPS系统的总体设计方案是在1973年完成的,受当时的技术限制,总体设计方案自身存在很多不足。随着时间的推移和用户要求的日益提高,GPS卫星的空间组成和卫星信号强度都不能满足当前的需要,当卫星系统位置对美国是最佳的时候,世界上有些国家在某一确定的时间段仍然不能很好地被卫星所覆盖。例如在中、低纬度地区每天总有两次盲区,每次20~30分钟,盲区时卫星几何图形结构强度低,RTK测量很难得到固定解。同时由于信号强度较弱,对空遮挡比较严重的地方,GPS无法正常应用。

2、受电离层影响

白天中午,受电离层干扰大,共用卫星数少,因而初始化时间长甚至不能初始化,也就无法进行测量。根据我们的实际经验,每天中午12点~13点,RTK测量很难得到固定解。

3、受数据链电台传输距离影响

数据链电台信号在传输过程中易受外界环境影响,如高大山体、建筑物和各种高频信号源的干扰,在传输过程中衰减严重,严重影响外业精度和作业半径。另外,当RTK作业半径超过一定距离时,测量结果误差超限,所以RTK的实际作业有效半径比其标称半径要小,工程实践和专门研究都证明了这一点。

4、受对空通视环境影响

在山区、林区、城镇密楼区等地作业时,GPS卫星信号被阻挡机会较多,信号强度低,卫星空间结构差,容易造成失锁,重新初始化困难甚至无法完成初始化,影响正常作业。

5、受高程异常问题影响

RTK作业模式要求高程的转换必须精确,但我国现有的高程异常分布图在有些地区,尤其是山区,存在较大误差,在有些地区还是空白,这就使得将GPS大地高程转换至海拔高程的工作变得比较困难,精度也不均匀,影响RTK的高程测量精度。

6、不能达到100%的可靠度

RTK确定整周模糊度的可靠性为95~99%,在稳定性方面不及全站仪,这是由于RTK较容易受卫星状况、天气状况、数据链传输状况影响的缘故。

5. rtk与全站仪坐标会有多大误差

rtk测量高程误差是2-3厘米

rtk测量高程容许误差是2-3cm。

rtk测量高程过程:

一:已知高程点出现线状或带状分布

二:测量点范围远离控制点所能控制区域

三:已知高程点有问题建议:不做校正,直接先去测量几个点,分别看高差是否与已知高程点的高差是否相同。

如果高差都相差很大,那说明你控制点本身有问题了。

6. rtk与全站仪的区别

rtk和全站仪的坐标如果是在同一样场地,用的是同一个系统的坐标,两者的坐标无区别。

7. rtk与全站仪哪个更精确

rtk是gps定位测量设备。

RTK(Real - time kinematic,实时动态)载波相位差分技术,是实时处理两个测量站载波相位观测量的差分方法,将基准站采集的载波相位发给用户接收机,进行求差解算坐标。这是一种新的常用的卫星定位测量方法,以前的静态、快速静态、动态测量都需要事后进行解算才能获得厘米级的精度,而RTK是能够在野外实时得到厘米级定位精度的测量方法,它采用了载波相位动态实时差分方法,是GPS应用的重大里程碑,它的出现为工程放样、地形测图,各种控制测量带来了新的测量原理和方法,极大地提高了作业效率。

8. rtk与全站仪联合测图研究

最大的区别是全站仪是光学测量产品,要求必须光学通视,RTK是无线电通讯,只需要“无线电通视”即可。其实有很多不同,测量原理上就不同。

9. rtk与全站仪之间的联系

GPS(Global Positioning System)是全球定位系统的简称 RTK(Real - time kinematic)是实时动态差分技术的简称 GPS工作的原理是测量出已知位置的卫星到用户接收机之间的距离,然后综合多颗卫星的数据就可知道接收机的具体位置。

GPS卫星发射的卫星信号由载波、测距码和导航电文组成,其中载波和测距码用于测量卫星与用户接收机之间的距离,导航电文中包含了卫星星历、钟差等信息。

由于测距码的码元宽度较大,用测距码测距精度不高,这种测量方法叫伪距测量;由于载波不受测距码的控制,载波相位测量的精度远高于伪距法。 RTK是一种利用GPS载波相位观测值进行实时动态相对定位的技术,RTK的工作原理是基准站通过数据链将其观测值和测站坐标信息一起传送给流动站。

流动站不仅通过数据链接收来自基准站的数据,还要采集GPS观测数据,并在系统内组成差分观测值进行实时处理,同时给出厘米级定位结果。 综上,可以说RTK是GPS的一种应用。