1. 接触线磨耗测量计算
磨损与故障,大致分三个阶段: Ⅰ:初期阶段。在此阶段中,机器零件表面的高低不平处,以及氧化脱炭层,由于零件的运转,互相磨擦作用,很快被磨损,这一磨损速度快,但时间短,故障率低。 Ⅱ:正常阶段。零件磨损趋于缓慢,基本上是匀速增加,故障率正常。 Ⅲ:剧烈阶段。零件磨损由量变到质变,超过一定限度,正常磨损关系被破坏,接触情况恶化,磨损加快,设备的工作性能也迅速降低,如不停止使用,及时进行维修,设备可能被损坏。
2. 接触线磨耗点通常选取在哪里
受电弓肯定和电气化铁路的接触网是接触的。
为保证牵引电流的顺利流通,受电弓和接触线之间必须有一定的接触压力。弓网实际接触压力由四部分组成:受电弓升弓系统施加于滑板,使之向上的垂直力为静态接触压力(一般为70N或90N);由于接触悬挂本身存在弹性差异,接触线在受电弓抬升作用下会产生不同程度的上升,从而使受电弓在运行中产生上下振动,使受电弓产生一个与其本身归算质量相关的上下交变的动态接触压力;受电弓在运行中受空气流作用产生的一个随速度增加而迅速增加的气动力;受电弓各关节在升降弓过程中产生的阻尼力。 弓网接触压力能直观的反映受电弓滑板和接触线间的接触情况,它必须符合正态分布规律,在一定范围内波动。如果太小,会增加离线率;如果太大,会使滑板和接触线间产生较大的机械磨耗。为保证受电弓具有可靠的受流质量,应尽量减小受电弓的归算质量,增加接触悬挂的弹性均匀性。滑板的质量和机电性能对受流质量影响很大。3. 接触线磨耗计算公式
会磨损的,但也是会定期的更换的。现在高速铁路受电弓滑板+接触网通用的是硬碳滑板/浸金属碳滑板+CT/CTMH线,完全没有用钢滑板和钢铝线这种高磨耗组合的。
并且接触网比你想象中耐磨得多,CTMH120线通过450000受电弓架次平均磨耗高度约0.35mm,而CTMH120检修标准为平均磨耗面积达到横截面积20%即平均磨耗高度为3.10mm进行全锚段换线。
4. 接触线磨耗的定义
一、道岔过车失表的原因分析
(一)自动开闭器自身维修问题:
1.动接点固定不良,动接点偏移;
2.静接点固定不良,静接点片偏移;
3.动接点环上开口销折断,动接点环窜出;
4.固定动接点的胶木座断裂,动接点环窜出;
5.接点组磨耗严重,静接点片断裂;
6.静接点辅助片无追随力,接点接触压力小;
7.动接点在静接点内的接触深度不达标;
8.静接点片下边与动接点绝缘体接触;
5. 接触线磨耗测量计算方法
有几点情况可以判断碳刷已损坏:
1、电刷运行时过热,噪音大,破损;
2、电刷运行时火花大;
3、碳刷与滑环接触面不足70%。
4、碳刷弹簧压力不合适等等。
碳刷是电动机或发电机或其它旋转机械的固定部分和转动部分之间传递能量或信号的装置,电机转动的时候,把电能通过换相器输送给线圈。
碳刷坏对性能的影响:若不及时更换会损坏转子的铜片,也会导致运行时接触不良,对线圈也不好,机器力道会变小。机器会发热减少使用寿命。
6. 接触线磨耗及损伤警示值
根据斜腕臂上安装的定位管受力状态来区分,定位管承受定位器传递来的水平分力如果受拉力为正定位,受压力为反定位; 正反定位是为了使接触线在受电弓滑板平面内呈“之”形滑动接触,使受电弓滑板均匀磨耗。
7. 接触线磨耗标准
测量时,由于各种因素会造成少许的误差,这些因素必须去了解,并有效的解决,方可使整个测量过程中误差减至最少.测量时,造成误差的主要有系统误差和随机误差,而系统误差有下列情况:误读、误算、视差、刻度误差、磨耗误差、接触力误差、挠曲误差、余弦误差、阿贝 (Abbe) 误差、热变形误差等.系统误差的大小在测量过程中是不变的,可以用计算或实验方法求得,即是可以预测,并且可以修正或调整使其减少.这些因素归纳成五大类,详细内容叙述如下: 1.人为因素 由于人为因素所造成的误差,包括误读、误算和视差等.而误读常发生在游标尺、分厘卡等量具.游标尺刻度易造成误读一个最小读数,如在10.00 mm处常误读成10.02 mm或9.98 mm.分厘卡刻度易造成误读一个螺距的大小,如在10.20 mm常误读成10.70 mm或9.70 mm.误算常在计算错误或输入错误数据时所发生.视差常在读取测量值的方向不同或刻度面不在同一平面时所发生,两刻度面相差约在0.0.4 mm之间,若读取尺寸在非垂直于刻度面时,即会产生 的误差量.为了消除此误差,制造量具的厂商将游尺的刻划设计成与本尺的刻划等高或接近等高,(游尺刻划有圆弧形形成与本尺刻划几近等高,游尺为凹V形且本尺为凸V形,因此形成两刻划等高. 2.量具因素 由于量具因素所造成的误差,包括刻度误差、磨耗误差及使用前未经校正等因素.刻度分划是否准确,必须经由较精密的仪器来校正与追溯.量具使用一段时间后会产生相当程度磨耗,因此必须经校正或送修方能再使用. 3.力量因素 由于测量时所使用接触力或接触所造成挠曲的误差.依据虎克定律,测量尺寸时,如果以一定测量力使测轴与机件接触,则测轴与机件皆会局部或全面产生弹性变形,为防止此种弹性变形,测轴与机件应采相同材料制成.其次,依据赫兹 (Hertz) 定律,若测轴与机件均采用钢时,其弹性变形所引起的误差量 应用量表测量工件时,量表固定于支持上,支架因被测量力会造成弹性变形,如图2-4-3所示,在长度 的断面二次矩为 ,长 的支柱为 ,纵弹性系数分别为 、 ,因此测量力为P时,挠曲量 为 .为了防止此种误差,可将支柱增大并尽量缩短测量轴线伸出的长度.除此之外,较大型量具如分厘卡、游标尺、直规和长量块等,因本身重量与负载所造成的弯曲.通常,端点标准器在两端面与垂直线平行的支点位置为0.577全长时,其两端面可保持平行,此支点称之为爱里点 (Airey Points) .线刻度标准器支点在其全长之0.5594位置,其全长弯曲误差量为最小,此处称之为贝塞尔点 (Bessel Points) 4.测量因素 测量时,因仪器设计或摆置不良等所造成的误差,包括余弦误差、阿贝误差等.余弦误差是发生在测量轴与待测表面成一定倾斜角度 ,如图2-4-5所示其误差量为 ,为实际测量长度.通常,余弦误差会发生在两个测量方向,必须特别小心.例如测量内孔时,径向测量尺寸需取最大尺寸,轴向测量需取最小尺寸.同理,测量外侧时,也需注意取其正确位置.测砧与待测工件表面必须小心选用,如待测工件表面为平面时需选用球状之测砧、工件为圆柱或圆球形时应选平面之测砧.阿贝原理 (Abbe’ Law) 为测量仪器的轴线与待测工件之轴线需在一直在线.否则即产生误差,此误差称为阿贝误差.通常,假如测量仪器之轴线与待测工件之轴线无法在一起时,则需尽量缩短其距离,以减少其误差值.若以游标尺测量工件为例,如图2-4-6所示,其误差为 ,因此欲减少游标尺测量误差,需将本尺与游尺之间隙所造成之 角减小及测量时应尽量靠近刻度线.若以量表测量工件为例,如图2-4-7所示其量表之探针为球形,工件为圆柱,两轴心有偏位量 时,其接触的误差量为 .若量表之探针和工件均为平面时,若两平面倾斜一定角度 时,其接触的误差量为 如图2-4-8所示,此误差称为正弦误差.图2-4-9所示为凸轮在机构设计的误差分析图,为了减少磨损,常将从动件的端头设计成半径为 的圆球或圆柱体,两者间的压力角为 ,因此引起误差为. 5.环境因素 测量时受环境或场地之不同,可能造成的误差有热变形误差和随机误差为最显着.热变形误差通常发生于因室温、人体接触及加工后工件温度等情形下,因此必须在温湿度控制下,不可用手接触工件及量具、工件加工后待冷却后才测量.但为了缩短加工时在加工中需实时测量,因此必须考虑各种材料之热胀系数 作为补偿,以因应温度材料的热膨胀系数 不同所造成的误差.
8. 接触线磨耗测量的周期是多少
角磨机一般都是有刷电机,工作正常说明它的电路问题不大,一般就是电刷,也就是碳刷经过长时间磨损,它够不到电极了,所以出现停转或者接触不良的现象,拧开碳刷保护盖板,拿出来看看碳刷是不是很短了,换一个新的上去,一般是一对的,再有换角磨机碳刷要断电,切勿触电。
9. 接触线磨耗测量计算公式
间隙测量主要有以下方法:
一、探针法
探针法是目前间隙测量的常用方法,采用叶尖放电方式,即依靠电机使外加直流电压的探针沿径向移动,当探针移向叶尖至发生放电为止,探针的行程与初始安装间隙(静态时探针到机匣内表面的距离)之差即叶尖间隙。它主要由探针、执行机构及控制器组成。其间隙测量系统在探针上施加高压,在执行机构的驱动下,以连续的步进逐渐伸向被测物体,当探针距离被测物体只有微米量级时,发生电弧放电,控制器感受到放电后,在探针与叶尖物理接触之前,停止探针步进,将其缩回到安全位臵,同时显示叶尖间隙测量结果。它只适用于温度6000C以下、转速在6000r/min以上,而且探针容易受到异物及油渍的污染造成阻塞。由于它是接触式测量,一旦发动机紧急停车,探针缩回不到安全位臵,就容易发生故障。
二、电容法
电容法是利用绝缘电极(电容极板)与待测金属端而形成的电容进行测量的,间隙的变化导致测量电容的变化,再将电容变化量通过检测电路和调理电路转换成易于检测和分析的电压或电流信号。电容法广泛应用于位移、振动、角度、加速度等机械量的精密测量,具有结构简单、体积小、分辨率高、动态响应好等特点。电容式传感器利用了将非电量的变化转换为电容量的变化来实现对物理量的测量,广泛应用于位移、振动、角度、加速度等机械量的精密测量,步扩大到压力、差压、液而、成分含量等方而的测量,电容式位移传感器,是根据被测物体的位移变化转换为电容器电容变化的一种传感器,一般用于高频振动和微小位移的测量。
三、电涡流法
电涡流法是采用金属切割磁力线产生磁场变化的原理,根据电涡流的大小确定间隙。电涡流传感器能静态和动态的非接触、高线性度、高分辨率地测量被测金属导体距探头表面的距离,是一种非接触的线性化计量工具。电涡流传感器能准确测量被测体(必须是金属导体)与探头端面之间静态和动态的相对位移变化。在高速旋转机械和往复式运动机械的状态分析、振动研究、分析测量中,需要对非接触的高精器能直接非接触测量转轴的状态,对诸如转子的不平衡、不对中、轴承磨损以及汽轮机、水轮机、鼓风机、压缩机、空分机、齿轮箱、大型冷却泵等大型旋转机械轴的轴向位移、键相器、轴转速、胀差、偏心、轴裂纹及发生摩擦等机械问题的早期判定等提供关键的信息。利用电涡流传感设计间隙测量应用系统,用来实时测量和显示气浮轴承偏心度。
四、光纤法
光纤法一般分反射式光纤法和光导探针测量法。
1、反射式光纤法:
基本原理是:当光源发出的光经光纤照射到位移反射体后,被反射的光又经接收光纤输出,被光敏器件接收。其输出光强决定于反射体距光纤探头的距离,当位移变化时则输出光强作相应的变化,通过对光强的检测得到间隙值。
2、光导(激光近程)探针测量法:
光导探针法是通过光导纤维将一激光束投射到待测体上,当间隙发生变化时,由于反射光返回路径不同,在光电接收器上的光点位臵发生变化,其变化量经过计算即可得出待测的间隙。光导探针间隙测量系统包括激光器、探头、光纤、光电转换装臵、信号记录和监视器等。