1. 傅里叶红外光谱仪结构图
傅立叶变换红外光谱仪的原理是通过测量经过红外吸收的干涉图,并对其进行傅立叶积分变换来获得被测物质的红外波段的光谱图,从而可以对该物质的元素,组分和分子结构进行分析和确定。
和传统的色散型光谱仪相比,傅立叶变换红外光谱仪可以获得较好的信噪比和分辨率。目前学校和研究所里使用的红外谱仪基本上都是傅立叶变换红外谱仪(FTIR).
2. 傅里叶红外光谱仪原理图
傅里叶红外光谱干涉仪作用是一种最早期的电信号放大器件。被封闭在玻璃容器(一般为玻璃管)中的阴极电子发射部分、控制栅极、加速栅极、阳极(屏极)引线被焊在管基上。
利用电场对真空中的控制栅极注入电子调制信号,并在阳极获得对信号放大或反馈振荡后的不同参数信号数据。
早期应用于电视机、收音机扩音机等电子产品中,近年来逐渐被半导体材料制作的放大器和集成电路取代,但目前在一些高保真的音响器材中,仍然使用低噪声、稳定系数高的电子管作为音频功率放大器件
3. 傅里叶红外光谱仪图片
其主要优点如下:
1)扫描速度快。傅立叶变换红外光谱仪的扫描速度比色散型仪器快数百倍,而且在任何测量时间内都能获得辐射源的所有频率的全部信息,即所谓的“多路传输”。对于稳定的样品,在一次测量中一般采用多次扫描、累加求平均法得干涉图,这就改善了信噪比。在相同的总测量时间和相同的分辨率条件下,傅里叶变换红外光谱法的信噪比比色散型的要提高数十倍以上。
2)具有很高的分辨率。分辨率是红外光谱仪的主要性能指标之一,指光谱仪对两个靠得很近的谱线的辨别能力。傅里叶变换红外光谱仪均有多档分辨率值供用户据实际需要随选随用。
3)波数精度高。波数是红外定性分析的关键参数,因此仪器的波数精度非常重要。因为干涉仪的动镜可以很精确地驱动,所以干涉图的变化很准确,同时动镜的移动距离是He-Ne激光器的干涉纹测量的,从而保证了所测的光程差很准确,因此在计算的光谱中有很高的波数精度和准确度,通常可到 0.01cm-1。
4)极高的灵敏度。色散型红外分光光度计大部分的光源能量都损失在入口狭缝的刀口上,而傅立叶变换红外仪没有狭缝的限制,辐射通量只与干涉仪的平面镜大小有关,在同样的分辨率下,其辐射通量比色散型仪器大得多,从而使检测器接受的信噪比增大,因此具有很高的灵敏度,由于此优点,使傅立叶变换红外光谱仪特别适合测量弱信号光谱。
5)研究光谱范围宽。一台傅立叶变换红外仪只要用计算机实现测量仪器的元器件(不同的分束器和光源等)的自动转换,就可以研究整个近红外、中红外和远红外区的光谱。 主要就这几点哈。
4. 傅里叶红外光谱仪简图
傅里叶红外光谱仪测的是在满载状态变压器工作于能量完全传递,或不完全传递的工作模式。一般要根据工作环境进行设计,常规反激电源应该工作在连续模式,这样开关管、线路的损耗都比较小,而且可以减轻输入输出电容的工作应力,但是这也有一些例外。需要在这里特别指出:由于反激电源的特点也比较适合设计成高压电源,而高压电源变压器一般工作在断续模式,本人理解为由于高压电源输出需要采用高耐压的整流二极管。
5. 傅里叶红外光谱图分析
红外变换光谱可以通过三棱镜色散来查看。
6. 傅里叶红外光谱仪百科
傅立叶红外光谱仪最核心的部分是 迈克尔逊干涉仪。可以说没有干涉仪就没有傅立叶变换红外光谱。
正是因为红外光源经过迈克尔逊干涉仪发生多色光相干,经过样品吸收之后,检测器检测到含有样品信息的红外干涉光的干涉图信号,再经过计算机将干涉图信号经过傅立叶变换,才转换成红外光谱。
其余的部件,如:检测器,光源,光学反射镜,采集卡,计算机等。
光源:用于产生宽带的红外光,样品吸收光源产生的红外光后引起样品分子的振动态跃迁,从而引其透过样品的红外光在相应波长上的透过强度的变化,这也是红外光谱能检测分子振动特征峰的理论来源。
光学反射镜:用于改变红外光的光路 检测器:用于检测透过样品的红外吸收信号,并将光信号转换成电信号传送给计算机的采集卡。
采集卡:用于采集检测器检测到的信号,并将信号存储、处理成光谱。
计算机:用于控制光谱仪的运行,协调迈克尔逊干涉仪,检测器和采集卡的运行、数据采集和处理。
7. 傅里叶红外光谱图分析手册
红外吸收峰都很小,需要多次照射吸收的加合结果生成易辨认的图谱。
而且需要一个宽频率范围的红外线。用傅里叶变换效率会很高。