1. 傅里叶变换红外光谱仪用途
傅立叶红外光谱仪最核心的部分是 迈克尔逊干涉仪。可以说没有干涉仪就没有傅立叶变换红外光谱。
正是因为红外光源经过迈克尔逊干涉仪发生多色光相干,经过样品吸收之后,检测器检测到含有样品信息的红外干涉光的干涉图信号,再经过计算机将干涉图信号经过傅立叶变换,才转换成红外光谱。
其余的部件,如:检测器,光源,光学反射镜,采集卡,计算机等。
光源:用于产生宽带的红外光,样品吸收光源产生的红外光后引起样品分子的振动态跃迁,从而引其透过样品的红外光在相应波长上的透过强度的变化,这也是红外光谱能检测分子振动特征峰的理论来源。
光学反射镜:用于改变红外光的光路 检测器:用于检测透过样品的红外吸收信号,并将光信号转换成电信号传送给计算机的采集卡。
采集卡:用于采集检测器检测到的信号,并将信号存储、处理成光谱。
计算机:用于控制光谱仪的运行,协调迈克尔逊干涉仪,检测器和采集卡的运行、数据采集和处理。
2. 近红外傅里叶变换光谱仪
傅立叶红外光谱仪是一种用于环境科学技术及资源科学技术领域的分析仪器,于2015年12月11日启用。
主要功能
红外光谱与分子的结构密切相关,是研究表征分子结构的一种有效手段,与其它方法相比较,红外光谱由于对样品没有任何限制,它是公认的一种重要分析工具。在分子构型和构象研究、化学化工、物理、能源、材料、天文、气象、遥感、环境、地质、生物、医学、药物、农业、食品、法庭鉴定和工业过程控制等多方面的分析 测定中都有十分广泛的应用。 红外光经过干涉仪变成干涉光,干涉光可以进行调制和控制,干涉光经过待测的样品,被样品中的有机物吸收,然后进入检测器进行检测,可以对样品做全谱区的检测,从而确认样品的分子结构信息。
3. 傅里叶转换红外光谱
是问固体样品常用的测试方法?KBR压片、石蜡油、薄膜 棱镜和光栅光谱仪、傅里叶变换红外光谱仪 近红外光谱法,高效液相色谱法及容量分析法
4. 傅里叶变换红外光谱仪作用
傅立叶变换红外光谱仪被称为第三代红外光谱仪,利用麦克尔逊干涉仪将两束光程差按一定速度变化的复色红外光相互干涉,形成干涉光,再与样品作用。探测器将得到的干涉信号送入到计算机进行傅立叶变化的数学处理,把干涉图还原成光谱图。
红外光谱仪是利用物质对不同波长的红外辐射的吸收特性,进行分子结构和化学组成分析的仪器。红外光谱仪通常由光源,单色器,探测器和计算机处理信息系统组成。根据分光装置的不同,分为色散型和干涉型。对色散型双光路光学零位平衡红外分光光度计而言,当样品吸收了一定频率的红外辐射后,分子的振动能级发生跃迁,透过的光束中相应频率的光被减弱,造成参比光路与样品光路相应辐射的强度差,从而得到所测样品的红外光谱。
5. 傅里叶变换红外光谱仪主要部件
傅立叶变换红外光谱仪的原理是通过测量经过红外吸收的干涉图,并对其进行傅立叶积分变换来获得被测物质的红外波段的光谱图,从而可以对该物质的元素,组分和分子结构进行分析和确定。
和传统的色散型光谱仪相比,傅立叶变换红外光谱仪可以获得较好的信噪比和分辨率。目前学校和研究所里使用的红外谱仪基本上都是傅立叶变换红外谱仪(FTIR).
6. 傅里叶变换红外光谱仪的应用
傅里叶红外光谱仪(FT-IR)是分子吸收光谱,不同的官能团,化学键振动或转动,对不同波数的红外光有吸收,据此,可以测定出样品有哪些官能团或化学键存在或变化,用以物质的定性、定量、反应过程等的研究。
7. 傅里叶变换红外光谱仪应用研究领域
红外吸收峰都很小,需要多次照射吸收的加合结果生成易辨认的图谱。
而且需要一个宽频率范围的红外线。用傅里叶变换效率会很高。