购买示波器注意事项(购买示波器注意事项有哪些)

海潮机械 2023-01-12 23:07 编辑:admin 248阅读

1. 购买示波器注意事项有哪些

波管和电源系统

  1)电源(Power):示波器主电源开关。当此开关按下时,电源指示灯亮,表示电源接通。

  2)辉度(Intensity):旋转此旋钮能改变光点和扫描线的亮度。观察低频信号时可小些,高频信号时大些。

  3)聚焦(Focus):聚焦旋钮调节电子束截面大小,将扫描线聚焦成最清晰状态。

  4)标尺亮度(Illuminance):此旋钮调节荧光屏后面的照明灯亮度。正常室内光线下,照明灯暗一些好。室内光线不足的环境中,可适当调亮照明灯。

  2、荧光屏

  根据被测信号在屏幕上占的格数乘以适当的比例常数(V/DIV,TIME/DIV)能得出电压值与时间值。根据输入通道的选择,将示波器探头插到相应通道插座上,示波器探头上的地与被测电路的地连接在一起,示波器探头接触被测点。示波器探头上有一双位开关。此开关拨到“X1”位置时,被测信号无衰减送到示波器,从荧光屏上读出的电压值是信号的实际电压值。此开关拨到“X10”位置时,被测信号衰减为1/10,然后送往示波器,从荧光屏上读出的电压值乘以10才是信号的实际电压值。

  3、垂直偏转因数和水平偏转因数

  每个波段开关上往往还有一个小旋钮,微调每档垂直偏转因数。将它沿顺时针方向旋到底,处于“校准”位置,此时垂直偏转因数值与波段开关所指示的值一致。逆时针旋转此旋钮,能够微调垂直偏转因数。垂直偏转因数微调后,会造成与波段开关的指示值不一致,这点应引起注意。示波器的标准信号源CAL,专门用于校准示波器的时基和垂直偏转因数。示波器前面板上的位移(Position)旋钮调节信号波形在荧光屏上的位置。

  4、输入通道和输入耦合选择

  1)输入通道选择-输入通道至少有三种选择方式:通道1(CH1)、通道2(CH2)、双通道(DUAL)。

  选择通道1时,示波器仅显示通道1的信号;选择通道2时,示波器仅显示通道2的信号;选择双通道时,示波器同时显示通道1和通道2的信号。维修中以选择通道1或通道2为多。

  2)输入耦合方式输入耦合方式-交流(AC)、地(GND)、直流(DC)。

  5、触发

  (1)常态(NORM):无信号时,屏幕上无显示;有信号时,与电平控制配合显示稳定波形;

  (2)自动(AUTO):无信号时,屏幕上显示光迹;有信号时与电平控制配合显示稳定的波形;

  (3)电视场(TV):用于显示电视场信号;

  (4)峰值自动(P-PAUTO):无信号时,屏幕上显示光迹;有信号时,无需调节电平即能获得稳定波形显示。

  6、扫描方式(SweepMode)

  扫描有自动(Auto)、常态(Norm)和单次(Single)三种扫描方式。

  举例:幅度和频率的测量方法(以测试示波器的校准信号为例)

  (1)将示波器探头插入通道1插孔,并将探头上的衰减置于“1”档;

  (2)将通道选择置于CH1,耦合方式置于DC档;

  (3)将探头探针插入校准信号源小孔内,此时示波器屏幕出现光迹;

  (4)调节垂直旋钮和水平旋钮,使屏幕显示的波形图稳定,并将垂直微调和水平微调置于校准位置;

  (5)读出波形图在垂直方向所占格数,乘以垂直衰减旋钮的指示数值,得到校准信号的幅度;

  (6)读出波形每个周期在水平方向所占格数,乘以水平扫描旋钮的指示数值,得到校准信号的周期(周期的倒数为频率);

  (7)一般校准信号的频率为1kHz,幅度为0.5V,用以校准示波器内部扫描振荡器频率,如果不正常,应调节示波器(内部)相应电位器,直至相符为止。

  

2. 示波器的用途和使用注意事项

2、示波器使用

本节介绍示波器的使用方法。示波器种类、型号很多,功能也不同。数字电路实验中使用较多的是20MHz或者40MHz的双踪示波器。这些示波器用法大同小异。本节不针对某一型号的示波器,只是从概念上介绍示波器在数字电路实验中的常用功能。

2.1荧光屏

荧光屏是示波管的显示部分。屏上水平方向和垂直方向各有多条刻度线,指示出信号波形的电压和时间之间的关系。水平方向指示时间,垂直方向指示电压。水平方向 分为10格,垂直方向分为8格,每格又分为5份。垂直方向标有0%,10%,90%,100%等标志,水平方向标有10%,90%标志,供测直流电平、交 流信号幅度、延迟时间等参数使用。根据被测信号在屏幕上占的格数乘以适当的比例常数(V/DIV,TIME/DIV)能得出电压值与时间值。

2.2示波管和电源系统

1.电源(Power)

示波器主电源开关。当此开关按下时,电源指示灯亮,表示电源接通。

2.辉度(Intensity)

旋转此旋钮能改变光点和扫描线的亮度。观察低频信号时可小些,高频信号时大些。

一般不应太亮,以保护荧光屏。

3.聚焦(Focus)

聚焦旋钮调节电子束截面大小,将扫描线聚焦成最清晰状态。

4.标尺亮度(Illuminance)

此旋钮调节荧光屏后面的照明灯亮度。正常室内光线下,照明灯暗一些好。室内光线不足的环境中,可适当调亮照明灯。

2.3垂直偏转因数和水平偏转因数

1.垂直偏转因数选择(VOLTS/DIV)和微调

在 单位输入信号作用下,光点在屏幕上偏移的距离称为偏移灵敏度,这一定义对X轴和Y轴都适用。灵敏度的倒数称为偏转因数。垂直灵敏度的单位是为 cm/V,cm/mV或者DIV/mV,DIV/V,垂直偏转因数的单位是V/cm,mV/cm或者V/DIV,mV/DIV。实际上因习惯用法和测量电 压读数的方便,有时也把偏转因数当灵敏度。

踪示波器中每个通道各有一个垂直偏转因数选择波段开关。一般按1,2,5方式从5mV/DIV到5V/DIV分为10档。波段开关指示的值代表荧光屏上垂直方向一格的电压值。例如波段开关置于1V/DIV档时,如果屏幕上信号光点移动一格,则代表输入信号电压变化1V。

每个波段开关上往往还有一个小旋钮,微调每档垂直偏转因数。将它沿顺时针方向旋到底,处于“校准”位置,此时垂直偏转因数值与波段开关所指示的值一致。逆时 针旋转此旋钮,能够微调垂直偏转因数。垂直偏转因数微调后,会造成与波段开关的指示值不一致,这点应引起注意。许多示波器具有垂直扩展功能,当微调旋钮被 拉出时,垂直灵敏度扩大若干倍(偏转因数缩小若干倍)。例如,如果波段开关指示的偏转因数是1V/DIV,采用×5扩展状态时,垂直偏转因数是 0.2V/DIV。

在做数字电路实验时,在屏幕上被测信号的垂直移动距离与+5V信号的垂直移动距离之比常被用于判断被测信号的电压值。

2.时基选择(TIME/DIV)和微调

时基选择和微调的使用方法与垂直偏转因数选择和微调类似。时基选择也通过一个波段开关实现,按1、2、5方式把时基分为若干档。波段开关的指示值代表光点在水平方向移动一个格的时间值。例如在1μS/DIV档,光点在屏上移动一格代表时间值1μS。

“微调”旋钮用于时基校准和微调。沿顺时针方向旋到底处于校准位置时,屏幕上显示的时基值与波段开关所示的标称值一致。逆时针旋转旋钮,则对时基微调。旋钮拔 出后处于扫描扩展状态。通常为×10扩展,即水平灵敏度扩大10倍,时基缩小到1/10。例如在2μS/DIV档,扫描扩展状态下荧光屏上水平一格代表的 时间值等于

2μS×(1/10)=0.2μS

TDS实验台上有10MHz、1MHz、500kHz、100kHz的时钟信号,由石英晶体振荡器和分频器产生,准确度很高,可用来校准示波器的时基。

示波器的标准信号源CAL,专门用于校准示波器的时基和垂直偏转因数。例如COS5041型示波器标准信号源提供一个VP-P=2V,f=1kHz的方波信号。

示波器前面板上的位移(Position)旋钮调节信号波形在荧光屏上的位置。旋转水平位移旋钮(标有水平双向箭头)左右移动信号波形,旋转垂直位移旋钮(标有垂直双向箭头)上下移动信号波形。

2.4输入通道和输入耦合选择

1.输入通道选择

输入通道至少有三种选择方式:通道1(CH1)、通道2(CH2)、双通道(DUAL)。选择通道1时,示波器仅显示通道1的信号。选择通道2时,示波器仅 显示通道2的信号。选择双通道时,示波器同时显示通道1信号和通道2信号。测试信号时,首先要将示波器的地与被测电路的地连接在一起。根据输入通道的选 择,将示波器探头插到相应通道插座上,示波器探头上的地与被测电路的地连接在一起,示波器探头接触被测点。示波器探头上有一双位开关。此开关拨到“×1” 位置时,被测信号无衰减送到示波器,从荧光屏上读出的电压值是信号的实际电压值。此开关拨到“×10"位置时,被测信号衰减为1/10,然后送往示波器, 从荧光屏上读出的电压值乘以10才是信号的实际电压值。

2.输入耦合方式

输入耦合方式有三种选择:交流(AC)、地(GND)、 直流(DC)。当选择“地”时,扫描线显示出“示波器地”在荧光屏上的位置。直流耦合用于测定信号直流绝对值和观测极低频信号。交流耦合用于观测交流和含 有直流成分的交流信号。在数字电路实验中,一般选择“直流”方式,以便观测信号的绝对电压值。

2.5触发

第一节指出,被测信号从 Y轴输入后,一部分送到示波管的Y轴偏转板上,驱动光点在荧光屏上按比例沿垂直方向移动;另一部分分流到x轴偏转系统产生触发脉冲,触发扫描发生器,产生 重复的锯齿波电压加到示波管的X偏转板上,使光点沿水平方向移动,两者合一,光点在荧光屏上描绘出的图形就是被测信号图形。由此可知,正确的触发方式直接 影响到示波器的有效操作。为了在荧光屏上得到稳定的、清晰的信号波形,掌握基本的触发功能及其操作方法是十分重要的。

1.触发源(Source)选择

要使屏幕上显示稳定的波形,则需将被测信号本身或者与被测信号有一定时间关系的触发信号加到触发电路。触发源选择确定触发信号由何处供给。通常有三种触发源:内触发(INT)、电源触发(LINE)、外触发EXT)。

内触发使用被测信号作为触发信号,是经常使用的一种触发方式。由于触发信号本身是被测信号的一部分,在屏幕上可以显示出非常稳定的波形。双踪示波器中通道1或者通道2都可以选作触发信号。

电源触发使用交流电源频率信号作为触发信号。这种方法在测量与交流电源频率有关的信号时是有效的。特别在测量音频电路、闸流管的低电平交流噪音时更为有效。

外触发使用外加信号作为触发信号,外加信号从外触发输入端输入。外触发信号与被测信号间应具有周期性的关系。由于被测信号没有用作触发信号,所以何时开始扫描与被测信号无关。

正确选择触发信号对波形显示的稳定、清晰有很大关系。例如在数字电路的测量中,对一个简单的周期信号而言,选择内触发可能好一些,而对于一个具有复杂周期的信号,且存在一个与它有周期关系的信号时,选用外触发可能更好。

2.触发耦合(Coupling)方式选择

触发信号到触发电路的耦合方式有多种,目的是为了触发信号的稳定、可靠。这里介绍常用的几种。

AC耦合又称电容耦合。它只允许用触发信号的交流分量触发,触发信号的直流分量被隔断。通常在不考虑DC分量时使用这种耦合方式,以形成稳定触发。但是如果触发信号的频率小于10Hz,会造成触发困难。

直流耦合(DC)不隔断触发信号的直流分量。当触发信号的频率较低或者触发信号的占空比很大时,使用直流耦合较好。

低 频抑制(LFR)触发时触发信号经过高通滤波器加到触发电路,触发信号的低频成分被抑制;高频抑制(HFR)触发时,触发信号通过低通滤波器加到触发电 路,触发信号的高频成分被抑制。此外还有用于电视维修的电视同步(TV)触发。这些触发耦合方式各有自己的适用范围,需在使用中去体会。

3.触发电平(Level)和触发极性(Slope)

触发电平调节又叫同步调节,它使得扫描与被测信号同步。电平调节旋钮调节触发信号的触发电平。一旦触发信号超过由旋钮设定的触发电平时,扫描即被触发。顺时 针旋转旋钮,触发电平上升;逆时针旋转旋钮,触发电平下降。当电平旋钮调到电平锁定位置时,触发电平自动保持在触发信号的幅度之内,不需要电平调节就能产 生一个稳定的触发。当信号波形复杂,用电平旋钮不能稳定触发时,用释抑(HoldOff)旋钮调节波形的释抑时间(扫描暂停时间),能使扫描与波形稳定同 步。

极性开关用来选择触发信号的极性。拨在“+”位置上时,在信号增加的方向上,当触发信号超过触发电平时就产生触发。拨在“-”位置上时,在信号减少的方向上,当触发信号超过触发电平时就产生触发。触发极性和触发电平共同决定触发信号的触发点。

2.6扫描方式(SweepMode)

扫描有自动(Auto)、常态(Norm)和单次(Single)三种扫描方式。

自动:当无触发信号输入,或者触发信号频率低于50Hz时,扫描为自激方式。

常态:当无触发信号输入时,扫描处于准备状态,没有扫描线。触发信号到来后,触发扫描。

单次:单次按钮类似复位开关。单次扫描方式下,按单次按钮时扫描电路复位,此时准备好(Ready)灯亮。触发信号到来后产生一次扫描。单次扫描结束后,准备灯灭。单次扫描用于观测非周期信号或者单次瞬变信号,往往需要对波形拍照。

上面扼要介绍了示波器的基本功能及操作。示波器还有一些更复杂的功能,如延迟扫描、触发延迟、X-Y工作方式等,这里就不介绍了。示波器入门操作是容易的, 真正熟练则要在应用中掌握。值得指出的是,示波器虽然功能较多,但许多情况下用其他仪器、仪表更好。例如,在数字电路实验中,判断一个脉宽较窄的单脉冲是 否发生时,用逻辑笔就简单的多;测量单脉冲脉宽时,用逻辑分析仪更好一些。

3. 示波器的使用难吗

不能.量程不够.

示波器是一种用途十分广泛的电子测量仪器。它能把肉眼看不见的电信号变换成看得见的图像,便于人们研究各种电现象的变化过程。示波器使用由高速电子组成的窄电子束撞击涂有荧光粉的屏幕,以产生较小的光斑(这是传统模拟示波器的工作原理)。

在被测信号的作用下,电子束就像笔的笔尖,可以在屏幕上绘制被测信号瞬时值的变化曲线。示波器可用于观察各种信号幅度随时间变化的波形曲线,也可用于测试各种电量,例如电压,电流,频率,相位差,幅度调制等。

示波器是用来测量交流电或脉冲电流波的形状的仪器,由电子管放大器、扫描振荡器、阴极射线管等组成。除观测电流的波形外,还可以测定频率、电压强度等。凡可以变为电效应的周期性物理过程都可以用示波器进行观测。

4. 买示波器需要注意什么

RIGOL的DS2示波器可以存储多种文件类型的波形,不同类型方法不一样 1,存储BMP图片格式。只需要插入U盘,按“打印”按钮,仪器直接存储图片到U盘 2,存储其他格式文件,需要插入U盘,在storage按钮中选择相应存储类型后存储 PS:请注意,U盘里面不能有太多个(文件个数,不是大小)文件,不然后影响存储效率

5. 购买示波器的要求

相信我20M就足够了。搞点维修和制作20M带宽的示波器绝对是性价比最好的,100M的对你来说过于浪费了,而且价格也高。而且像你搞维修更适合手持的示波器,方便携带。电商平台有很多手持示波器,可以比较参考一下。

6. 示波器使用注意事项

先测量yb4328示波器的峰值,再预置控制件以获得扫描基线。把被测信号馈入cH通道。控制旋钮将扫描时间因数置于适当位置,屏幕会显示几个周期的波形。最后将波形水平位移与中心线重合即可。

7. 购买示波器时一般要关注哪些功能或性能

1、首先检查电源线、插线板是否完好。

2、检查电源开关是否全部打开。

3、用风扇是否转动判断机器是否通电。

4、如一切正常但示波器还是不能启动,请联系售后。

一、示波器电源故障造成的不开机

示波器内部有独立的电源模块为主板和各功能模块供电,故需着重关注用电安全。

使用中需注意的问题:

1、使用示波器原装电源线;

2、确认电网稳定。当电网中有大功率电器接入时,先关闭示波器,拔下电源线,待电网稳定后再使用;

3、开机时:先插上AC电源线,再按开机键开机;

关机时:先按关机键关闭示波器,再拔掉AC电源线;

4、注意仪器使用环境,定期清理灰尘。

二、示波器烧通道/烧采集板

一般通道故障是由静电或接入过大信号造成的,严重的时候更会烧掉采集板和主控板。这种故障维修难度大、周期长、成本高,故使用中需特别注意:

1、严禁用手或身体其他部位碰触示波器通道接口,防止静电损伤;

2、使用前先估算信号幅度,使用合适衰减倍数的探头进行测试;

3、测试时先将探头接好,再通入信号;测试完毕后先断开测试信号,再取下探头。

三、示波器系统问题

类似计算机,示波器也有一套自己的操作系统来管理和控制硬件和软件资源。常见的示波器系统问题有系统崩溃,驱动程序丢失,数据丢失,磁盘/内存损坏等等。

使用中需注意的问题:

1、定期清理系统,进行全盘杀毒,备份系统;

2、不要对系统文件进行操作。对系统文件误操作可能会导致系统崩溃;

3、注意开关机顺序,禁止直接拔电源线。

8. 购买示波器注意事项有哪些呢

示波器是最重要、最常用的电子测试工具之一。由于电子技术的发展,示波器的能力也在不断提升,其性能与价格各具特色,市场上的品种也多种多样,在购买示波器时应充分考虑这些方面因素:要捕捉并观察信号的类型, 信号本身有无复杂特性,需要检测的信号是重复信号还是单次信号,以及要测量的信号过渡过程、 带宽或者上升时间是多大等等。

模拟示波器也许具有你熟悉的面板控制键钮,价格低廉。 但是随着A/D转换器速度逐年提高和价格不断降低,以及数字示波器不断增加的测量能力与各种实用功能的开发,尤其是捕捉瞬时信号和记忆信号的功能的完善,使数字示波器越来越受欢迎。因此在选购时应因地制宜,合理地选择。

下面我们来看看选择示波器应考虑哪些参数:

带宽

带宽一般定义为正弦输入信号幅度衰减到-3dB时的频率宽度, 即平均幅度的70.7%, 带宽决定示波器对信号的基本测量能力。 随着被测信号频率的增加,示波器对信号的准确显示能力将下降, 如果没有足够的带宽, 示波器将无法分辨高频分量的变化。 幅度将出现失真,边缘会变得圆滑,细节参数将丢失。 如果没有足够的带宽,就不能得到关于信号的所有特性及参数。

选择示波器时将要测量的信号最高频率分量乘以5作为示波器的带宽。这将会在测量中获得高于2%的精度。例如要测量电视机的色副载波,其频率为4.43MHz,取4.43MHz的5倍约为22MHz的示波器能满足精确的测量要求。

在某些应用场合,不知道信号带宽,但要了解它的最快上升时间,大多数字示波器的频率响应,可用下面的公式来计算等效带宽和仪器的上升时间: Bw=0.35/信号的最快上升时间。

带宽有两种类型:重复(或等效时间)带宽和实时(或单次)带宽。重复带宽只适用于重复的信号,显示来自于多次信号采集期间的采样。 实时带宽是示波器的单次采样中所能捕捉的最高频率,且当捕捉的信号不是经常出现时要求相当苛刻。 实时带宽与采样速率是密切相关的。

由于更宽的带宽往往意味着更高的价格,因此,应根据成本,投资和性能进行综合考虑。

采样率

采样率即为每秒采样次数,指数字示波器对信号采样的频率。示波器的采样率越快,所显示的波形的分辨率和清晰度就越高,重要信息和随机信号丢失的概率就越小。

如果需要观测较长时间范围内的慢变信号,则最小采样速率就变得较为重要。为了在显示的波形记录中保持固定的波形数,需要调整水平控制旋钮,而所显示的采样速率也将随着水平调节旋钮的调节而变化。

采样速率计算方法取决于所测量的波形的类型,以及示波器所采用的信号重现方式。

为了准确再现信号并避免混淆,奈奎斯特定理规定:信号的采样速率必须大于被测信号最高频率成分的两倍。然而,这个定理的前提是基于无限长时间和连续的信号。

由于没有示波器可以提供无限时间的记录长度,而且,从定义上看,低频干扰是不连续的,所以采用两倍于最高频率成分的采样速率,对数字示波器来说通常是不够的。

实际上,信号的准确再现取决于其采样速率和信号采样点间隙所采用的插值法。有一个在比较取样速率和信号带宽时很有用的经验法则: 如果示波器有内插(通过筛选以便在取样点间重新生成),则(取样速率/信号带宽)的比值至少应为4:1。无正弦内插时,则应采取10:1的比值。

波形捕获率

所有的示波器都会闪烁。 也就是说,示波器每秒钟以特定的次数捕获信号,在这些测量点之间将不再进行测量。 这就是波形捕获率, 也称屏幕刷新率,表示为波形数每秒(wfms/s)。采样速率表示的是示波器在一个波形或周期内,采样输入信号的频率;波形捕获速率则是指示波器采集波形的速度。 波形捕获速率取决于示波器的类型和性能级别,且有着很大的变化范围。 高频波形捕获速率的示波器将会提供更多的重要信号特性,并能极大地增加示波器快速捕获瞬时的异常信息,如抖动,矮脉冲、低频干扰和瞬时误差的概率等。

数字存储示波器(DSO)使用串行处理结构每秒钟可以捕获10到5000个波形。DPO数字荧光示波器采用并行处理结构,可以提供更高的波形捕获速率,有的高达每秒数百万个波形,大大提高了捕获间歇和难以捕捉信号的可能性,并能更快地发现瞬间出现的信号。

存储深度

存储深度也叫记录长度,是示波器所能存储的采样点多少的量度。 如果需要不间断地捕捉一个脉冲串,则要求示波器有足够的存储空间以便捕捉整个过程中偶然出现的信号。 将所要捕捉的时间长度除以精确重现信号所须的取样速度,可以计算出所要求的存储深度。

在正确位置上捕捉信号的有效触发,通常可以减小示波器实际需要的存储量。

存储深度与取样速度密切相关。 存储深度取决于要测量的总时间跨度和所要求的时间分辨率。

许多示波器允许用户选择记录长度,以便对一些操作中的细节进行优化。分析一个十分稳定的正弦信号,只需要500点的记录长度;但如果要解析一个复杂的数字数据流,则需要有一百万个点或更多点的记录长度。

触发功能

示波器的触发能使信号在正确的位置开始水平同步扫描,决定着信号波形的显示是否清晰。触发控制按钮可以稳定重复地显示波形并捕获单次波形。

大多数通用示波器的用户只采用边沿触发方式,特别是对新设计产品的故障查询。先进的触发方式可将所需要的信号分离出来,从而最有效地利用采样速度和存储深度。

现今有很多示波器,具有先进的触发能力:能根据由幅度定义的脉冲,由时间限定的脉冲(脉宽触发)和由逻辑状态或图形描述的脉冲(逻辑触发)进行触发。扩展和常规的触发功能组合也帮助显示视颍和其他难以捕捉的信号,如此先进的触发能力,在设置测试过程时提供了很大程度的灵活性,而且能大大地简化测量工作,给使用带来了很大的方便。

示波器的通道数

示波器的通道数取决于同时观测的信号数。在电子产品的开发和维修行业需要的是双通道示波器或称双踪示波器。如果要求观察多个模拟信号的相互关系,将需要一台4通道示波器。许多工作于模拟与数字两种信号系统的科研环境也考虑采用4通道示波器。

示波器选购其它注意事项

选购示波器时,要根据检测需要选购。 一般的检测,单通道示波器即可,对于检测两个相关的信号时,需要使用双通道示波器。双通道示波器具有两个独立的信号处理通道,可同时输入两个信号,因而可以将两个信号的相位、幅度、波形等参数进行比较和计量。此外,在检测同一信号的直流分量和交流分量时,借助于双通道示波器的两个通道,一个通道测直流分量,一个通道测交流分量,会十分方便。

在进行家用电器设备的电视机、影碟机、电磁炉等维修时,通常选40MHz 双通道示波器可以满足维修要求,因为在维修工作中往往不需要精确的测量信号的各种参数, 只需粗略的观测信号波形,估算频率和周期。此外,家电产品中很多的信号的频率特性都在示波器的测量范围之内,例如音频信号、视频信号、行同步、场同步、控制信号等都在示波器的测量范围之内,某些大于40MHz时钟信号也能测量。

经济条件好应选购100MHz的示波器,这样测量高频信号的精度更高。

家电维修工作中的示波器最好要有选行(电视信号的行信号)和选场(场同步)功能,观测视频信号时易于同步,使观测的波形稳定。

9. 购买示波器注意事项有哪些要求

1.采样率

示波器在测量信号时,需要这样,一个一个点的对波形进行采样,显然,这样的采样点越多,所测到的波形,就越接近最真实的波形。如果采样的点数过少,波形就会失真。

如一台示波器标注的采样率是:1GSa/s。sa就是sample ,样本,样品意思。1G = 1000MB = 1000 000KB = 1000 000 000字节。即,每秒可进行10亿次采样。一次采集一个字节。

注意,这只是示波器标注的最高采样率。它在实际使用时的采样率还受限于另外一个参数:存储深度。

2.存储深度

示波器在工作时,是在截取一段一段的波形,然后放在显示屏上给我们看的。需要将采集到的波形,存储到内存区,方便计算和处理。这块内存区的容量就是存储深度。这块内存区的容量是有限的而且是一个固定值。

例如,一台示波器的存储深度是2.5k。即,意味着,这台示波器的内存区域可以存放2500个采样点的数据。用存储深度除以采样率2.5k/1GSa/s = 2.5us,这就说明,这台示波器,只有2.5us的采样时间。

显然,2.5us长度的波形,在很多情况下,并不能满足我们的测量要求。所以为了能够采集到更长时间的波形,示波器会主动降低自己的采样率。

看示波器的屏幕的每一格占多少时间,然后计算屏幕上所有,格子的总时间,就可以知道,示波器此时的采样时间。若增大示波器的存储深度,那么示波器需要处理的数据也就会增加,此时若是示波器处理数据的速度慢,那么示波器就会变得非常卡。

3.带宽

(1)何为带宽

示波器的带宽,很大程度决定了示波器的价格。示波器和示波器的探头,可以简单的看成是一个RC低通滤波器。低频正弦信号,可以很轻松的进入到示波器内部的采样芯片。

高频正弦信号则会受到衰减。

由RC低通滤波器频率和幅值的关系可知

当频率高到某一特定的值时,幅值将衰减为原来的0.707倍。这个特定的频率就是示波器的带宽。

例如,一个示波器的带宽为100Mhz。如果输入一个f = 100Mhz,幅值为1v的正弦信号,那么示波器显示出来的波形,就只有0.707v了。

(2)五倍法则

即,示波器的带宽应该是被测正弦报信号的频率的5倍,最合适。

此时,信号的衰减,小到可以忽略。那么100M带宽的示波器,测量20M以下的正弦波时,衰减可以忽略。

(3)傅里叶变换

由傅里叶变换可知,任何信号波形,都是由正弦波信号有限次或者无限次组合得来的。(万波皆可正弦波)

10. 购买示波器注意事项有哪些问题

1 正确接地

在设置测量或处理电路时,正确地接地是一个重要步骤。示波器正确接地可以防止用户受到电击,用户正确接地可以防止电路受到损坏。

示波器接地意味着把示波器连接到电器中性的参考点上,如接地。把示波器三头电源线查到连接接地装置的插座上,实现示波器接地。

示波器接地对人身安全是必需的。如果高压接触没有接地的示波器机箱,不管是机箱的哪个部分,包括视乎已经绝缘的旋钮,都会发送电击。而在示波器正确接地时,电流会通过接地路径传送到接地装置上,而不是通过用户身体传送到接地装置上。接地对使用示波器准确测量也是必需的。示波器需要于测试的任何电路共享相同的接地。

某些示波器不要求单独连接接地装置。这些示波器已经对机箱控制功能进行绝缘,可以让用户远离任何可能的电击危险。

如果您正在处理集成电路(ICs),您还需要让自己接地。集成电路有微小的传导路径,用户身体中积聚的静电可能会损坏这些路径。在地毯上走动或脱下外套、然后触摸集成电路引线,就可能会毁掉一块昂贵的集成电路。为解决这个问题,应带上接地腕带。接地腕带可以把人身体中的静电安全地传送到接地装置上。

2 设置控制功能

在插好示波器后,看一下前面板。前面板一般分成三个主要区域,分别标为垂直区域、水平区域和触发区域。示波器可能还有其他区域,具体视型号和类型而定。

注意示波器上的输入连接器,在这里连接探头。大多数示波器只是有两条输入通道,每条通道可以在屏幕上显示一个波形。多条通道适合比较波形。MSO还有多格数字输入。

3 校准仪器

除正确设置示波器外,推荐定期自行校准一起,以准确地进行测量。如果上次自我校准以后环境温度变化幅度超过5℃(9℉),那么就需要进行校准,或者每周校准一次。在示波器菜单中,有时这可以作为“SignalPathCompensation”(信号路径补偿)启动。如需更详细说明,请参阅示波器手册。

4 连接探头

现在您准备把探头连接到示波器上。如果示波器匹配好,探头可以发货示波器的所有处理能力和性能,确保测量的信号的完整性。

测量一个信号要求两条连接:探头尖端连接和接地连接。探头通常带有一个夹子连接装置,用来把探头接地到被测电路上。在实践中,可以把接地夹连接到电路中的已知接地,如维修的产品的金属机箱,使探头尖端接触电路中的测试点。

5 补偿探头

无缘衰减电压探头必须对示波器进行补偿。在使用无缘探头前,必须先补偿探头,以使其电气特点于特定示波器均衡。

应该养成每次设置示波器都补偿探头的习惯。探头调节会降低测量精度。大多数示波器在前面板的一个端子上提供一个方波参考信号,用来来补偿探头。补偿探头的过程通常如下:

1、把探头连接到一条垂直通道上

2、把探头尖端连接到探头补偿信号上,即方波参考信号上

3、把探头接地夹连接到接地上

4、观察方波参考信号

5、正确调节探头,使方波的角是方的