1. 移存型序列信号发生器电路分析
序列号生成器是一种计算机软件。该软件可以自动随机生成2至32位序列号,并将这些注册信息包含到一个动态联接库DLL文件中,这样软件开发者可以将这个DLL文件同应用程序一并发行,并在应用程序的相关模块中调用这个DLL文件中提供的函数获得序列号,序列号对软件使用者来说是不透明的。
2. 数电序列信号发生器的设计
按事先规定的脉冲顺序输出序列信号是指在同步脉冲作用下循环地产生一串周期性的二进制信号.能产生这种信号的逻辑器件就称为序列信号发生器信号发生器。 信号发生器又称信号源或振荡器,它是指产生所需参数的电测试信号的仪器。在生产实践和科技领域中有着广泛的应用。按信号波形可分为正弦信号、函数(波形)信号、脉冲信号和随机信号发生器等四大类。各种波形曲线均可以用三角函数方程式来表示。常见的有函数信号发生器。
3. 移位寄存器序列信号发生器
右侧接线端含有一个向上的箭头,用于存储每次循环结束时的数据。LabVIEW将数据从移位寄存器右侧接线端传递到左侧接线端。循环将使用左侧接线端的数据作为下一此循环的初始值。该过程在所有循环执行完毕后结束。循环执行后,右侧接线端将返回移位寄存器保存的值。
移位寄存器可以传递任何数据类型,并和与其连接的第一个对象的数据类型自动保持一致。连接到各个移位寄存器接线端的数据必须属于同一种数据类型。
循环中可添加多个移位寄存器。如循环中的多个操作都需使用之上一次循环的值,可以通过多个移位寄存器保存结构中不同操作的数据值
4. 设计移存型序列信号发生器
用simulink下的sine wave,在幅度里设置为0.3(默认为1),频率注意要换算,不能输入1000,要把f=1000Hz换算成rad/s填入频率项中。
5. 移位寄存器设计序列发生器
在数字电路中,用来存放二进制数据或代码的电路称为寄存器。 寄存器是由具有存储功能的触发器组合起来构成的。一个触发器可以存储一位二进制代码,存放N位二进制代码的寄存器,需用n个触发器来构成。 按功能可分为:基本寄存器和移位寄存器。 移位寄存器 移位寄存器中的数据可以在移位脉冲作用下一次逐位右移或左移,数据既可以并行输入、并行输出,也可以串行输入、串行输出,还可以并行输入、串行输出,串行输入、并行输出,十分灵活,用途也很广。 目前常用的集成移位寄存器种类很多,如74164、74165、74166、74595均为八位单向移位寄存器,74195为四位单向移存器,74194为四位双向移存器,74198为八位双向移存器。
6. 移存型序列信号发生器电路分析图
1. 动态网络的过渡过程是十分短暂的单次变化过程。要用普通示波器观察过渡过程和
测量有关的参数,就必须使这种单次变化的过程重复出现。为此,我们利用信号发生器输
出的方波来模拟阶跃激励信号,即利用方波输出的上升沿作为零状态响应的正阶跃激励信
号;利用方波的下降沿作为零输入响应的负阶跃激励信号。只要选择方波的重复周期远大
于电路的时间常数τ,那么电路在这样的方波序列脉冲信号的激励下,它的响应就和直流
电接通与断开的过渡过程是基本相同的。
7. 移位型序列信号发生器
移位发生器由移位寄存器型计数器加译码电路构成。其中环形计数器的输出就是顺序脉冲,故可不加译码电路就可直接作为顺序脉冲发生器。
作为时间基准的计数脉冲由计数器的输入端送入,译码器即将计数器状态译成输出端上的顺序脉冲,使输出端上的状态按一定时间、一定顺序轮流为1,或者轮流为0。
8. 移位寄存器构成序列信号发生器有什么优点
在数字电路中,能按一定时间、一定顺序轮流输出脉冲波形的电路称为顺序脉冲发生器。
顺序脉冲发生器也称脉冲分配器或节拍脉冲发生器,一般由计数器(包括移位寄存器型计数器)和译码器组成。
作为时间基准的计数脉冲由计数器的输入端送入,译码器即将计数器状态译成输出端上的顺序脉冲,使输出端上的状态按一定时间、一定顺序轮流为1,或者轮流为0。 前面介绍过的环形计数器的输出就是顺序脉冲,故可不加译码电路即可直接作为顺序脉冲发生器。
一、计数器型顺序脉冲发生器
计数器型顺序脉冲发生器一般用按自然态序计数的二进制计数器和译码器构成。
举例:用集成计数器74LS163和集成3线-8线译码器74LS138构成的8输出顺序脉冲发生器。
二、移位型顺序脉冲发生器
◎移位型顺序脉冲发生器由移位寄存器型计数器加译码电路构成。其中环形计数器的输出就是顺序脉冲,故可不加译码电路就可直接作为顺序脉冲发生器。
顺序脉冲发生器分计数型和移位型两类。
计数型顺序脉冲发生器状态利用率高,但由于每次CP信号到来时,可能有两个或两个以上的触发器翻转,因此会产生竞争冒险,需要采取措施消除。 移位型顺序脉冲发生器没有竞争冒险问题,但状态利用率低。
9. 移存型序列信号发生器电路分析原理
电场力对电场中的单位正电荷由一点移动到另一点所作的功称为电压,即,式中Uba为b点对a点的电压;E为电场强度;l为积分路径。电压检测芯片是电子技术测量的一个基本参数,电压测量是电子测量的基础。很多电子设备都与电压有关,如信号发生器、发射机和接收机等,电压是主要的技术指标;其他技术指标,如灵敏度、选择性和增益,也都与电压有关。
电路或元件、器件的工作状态,通常皆以电压的形式反映出来。电压的测量(电压检测芯片)对电流、场强、衰减等参数的测量也很重要。