工业机器人用户框架(工业机器人系统结构)

海潮机械 2023-01-22 10:45 编辑:admin 218阅读

1. 工业机器人系统结构

工业机器人由主体、驱动系统和控制系统三个基本部分组成。主体即机座和执行机构,包括臂部、腕部和手部,有的机器人还有行走机构。大多数工业机器人有3~6个运动自由度,其中腕部通常有1~3个运动自由度;驱动系统包括动力装置和传动机构,用以使执行机构产生相应的动作;圆柱坐标型工业机器人示意图控制系统是按照输入的程序对驱动系统和执行机构发出指令信号,并进行控制

2. 工业机器人系统结构分析

1、点位控制方式(PTP)

    点位控制在机电一体化领域和机器人行业有及其广泛的应用,机械制造业中的数控机床对零件轮廓的跟踪,工业机器人的指端轨迹控制和行走机器人的路径跟踪等都是点位控制系统的典型应用。

     在控制时,要求工业机器人能够快速、准确地在相邻各点之间运动,对达到目标点的运动轨迹则不作任何规定。

    定位精度和运动所需的时间是这种控制方式的两个主要技术指标。这种控制方式具有实现容易、定位精度要求不高的特点,因此,常被应用在上下料、搬运、点焊和在电路板上安插元件等只要求目标点处保持末端执行器位姿准确的作业中。这种方式比较简单,但是要达到2~3um的定位精度是相当困难的。

    点位控制系统实际上也是一种位置伺服系统,它们的基本结构与组成基本上是相同的,只不过侧重点不同而已,它们的控制复杂程度也各有千秋;按反馈方式来分,可以分为闭环系统、半闭环系统与开环系统。

2、连续轨迹控制方式(CP)

     PTP点位控制下,始末速度为0,期间可以有各种的速度规划方式。

    CP控制是对工业机器人末端执行器在作业空间中的位姿进行连续的控制,中间点的速度不为0,连贯运动,通过速度前瞻的方式获得每个点的速度大小。一般连续轨迹控制主要都用到了速度前瞻的方法:前向速度限制、转角速度限制、回溯速度限制、最大速度限制、轮廓误差速度限制。

     这种控制方式要求其严格按照预定的轨迹和速度在一定的精度范围内运动,而且速度可控、轨迹光滑、运动平稳,以完成作业任务。

    工业机器人各关节连续、同步地进行相应的运动,其末端执行器即可形成连续的轨迹。这种控制方式的主要技术指标是工业机器人末端执行器位 姿的轨迹跟踪精度及平稳性,通常弧焊、喷漆、去毛边和检测作业机器人都采用这种控制方式。

3、力(力矩)控制方式

     随着机器人应用边界的不断拓宽,单单靠视觉赋能已经满足不了复杂的实际应用,此时就必须引入力/力矩控制输出量,或者将力/力矩作为闭环反馈量引入控制。

     在进行装配、抓放物体等工作时,除了要求准确定位之外,还要求所使用的力或力矩必须合适,这时必须要使用(力矩)伺服方式。这种控制方式的原理与位置伺服控制原理基本相同,只不过输入量和反馈量不是位置信号,而是力(力矩)信号,所以该系统中必须有力(力矩)传感器。有时也利用接近、滑动等传感功能进行自适应式控制。

    由于机械臂和工作面的接触常常是未知的复杂曲面,因而这种力/力矩的感知,还应具备多维能力。

4、智能控制方式

     机器人的智能控制是具有智能信息处理和智能信息反馈以及智能控制决策的控制方式,通过传感器(如摄像机、图像传感器、超声波传成器、激光器、导电橡胶、压电元件、气动元件、行程开关等机电元器件)获得周围环境的知识,并根据自身内部的知识库作出相应的决策

3. 工业机器人系统的基本结构

工业机器人一般是由驱动装置、执行机构、检测装置和控制系统和复杂机械等组成。

驱动装置。是驱使执行机构运动的机构,按照控制系统发出的指令信号,借助于动力元件使机器人进行动作。它输入的是电信号,输出的是线、角位移量。机器人使用的驱动装置主要是电力驱动装置,如步进电机、伺服电机等,此外也有采用液压、气动等驱动装置。

执行机构。即机器人本体,其臂部一般采用空间开链连杆机构,其中的运动副(转动副或移动副)常称为机器人高科技产物(18张)关节,关节个数通常即为机器人的自由度数。根据关节配置型式和运动坐标形式的不同,机器人执行机构可分为直角坐标式、圆柱坐标式、极坐标式和关节坐标式等类型。

控制系统。一种是集中式控制,即机器人的全部控制由一台微型计算机完成。另一种是分散(级)式控制,即采用多台微机来分担机器人的控制,如当采用上、下两级微机共同完成机器人的控制时,主机常用于负责系统的管理、通讯、运动学和动力学计算,并向下级微机发送指令信息;作为下级从机,各关节分别对应一个CPU,进行插补运算和伺服控制处理,实现给定的运动,并向主机反馈信息。

检测装置的作用。是实时检测机器人的运动及工作情况,根据需要反馈给控制系统,与设定信息进行比较后,对执行机构进行调整,以保证机器人的动作符合预定的要求。

4. 工业机器人系统结构特点

六轴机器人的工作原理

  机器人是一种能自动化定位控制并可重新汇编程序以变动的多功能机器。它有多个机器人主要由手部、运动机构和控制系统三大部分组成。手部是用来抓持工件(或工具)的部件,根据被抓持物件的形状、尺寸、重量、材料和作业要求而有多种结构形式,如夹持型、托持型和吸附型等。

  运动机构,使手部完成各种转动(摆动)、移动或复合运动来实现规定的动作,改变被抓持物件的位置和姿势。运动机构的升降、伸缩、旋转等独立运动方式,称为机器人的自由度。

  为了抓取空间中任意位置和方位的物体,需有6个自由度。自由度是机械手设计的关键参数。自由度越多,机器人的灵活性越大,通用性越广,其结构也越复杂。一般机器人有2~3个自由度。

  控制系统是通过对机器人每个自由度的电机的控制,来完成特定动作。同时接收传感器反馈的信息,形成稳定的闭环控制。控制系统的核心通常是由单片机或dsp等微控制芯片构成,通过对其编程实现所要功能。

  六轴机器人的运行原理

  六轴机器人由执行机构、驱动系统、控制系统组成。工业机械手的基本工作原理是在PLC程序控制的条件下,采用气压传动方式,来实现执行机构的相应部位发生规定要求的,有顺序,有运动轨迹,有速度和时间的动作。同时按其控制系统的信息对执行机构发出指令,可对机械手的动作进行监视,当动作有错误或发生故障时即发出报警信号。位置检测装置随时将

  执行机构的实际位置反馈给控制系统,并与设定的位置进行比较,然后通过控制系统进行调整,从而使执行机构以的精度达到设定位置。其中驱动系统是驱动工业机械手执行机构运动的,主要由动力装置、调节装置和辅助装置组成。常用的驱动系统有液压传动、气压传动、机械传动。而控制系统是支配着工业机械手按规定的要求运动的系统。

5. 工业机器人系统结构框

目前工业机器人主要由 3 部分组成:操作机、控制器和示教器。

操作机

操作机又称机器人本体,即工业机器人的机械主体,是用来完成规定任务的执行机构。

控制器

控制器用来控制工业机器人按规定要求动作,是机器人的核心部分,它类似于人的大脑,控制着机器人的全部动作。

示教器

示教器是工业机器人的人机交互接口,针对机器人的所有操作基本上都是通过示教器来完成的,如点动机器人,编写、测试和运行机器人程序,设定、查阅机器人状态设置和位置等。

6. 工业机器人系统结构不包括

机器人的基本结构不包括:传动部分;计划制定

机器人的基本结构包括:

1.机械部分

2.传感部分

3.控制部分