1. 激光切割机如何定位工件坐标系
全站仪有激光指向和激光对中,激光指向的强度是出厂时设定的,厂商可以调,用户是不可以调节的,但激光对中的强度用户自己是可调,方法参照说明书。 现在一些电经也带有激光指向,可以调节光斑大小,功率也是用户不可以调的。 全站仪具有角度测量、距离(斜距、平距、高差)测量、三维坐标测量、导线测量、交会定点测量和放样测量等多种用途。内置专用软件后,功能还可进一步拓展。
2. 线切割机床坐标
1、参照物不同:绝对坐标是一个固定的坐标位置,使用它输入的点坐标不会因参照物的不同而不同。
相对坐标可以把任意物体当做参照物,坐标位置会因参照物的不同而不同。
2、坐标值不同:绝对坐标是不管目前处于什么位置,从坐标原点到你的位置,X,Y,Z的值就是绝对坐标值,相对坐标的含义是相对上一点而言的,可以是你这一点的绝对坐标减去上一点的绝对坐标。
假如说上一点绝对坐标是4,3, 目前这一点绝对坐标是5,6,则目前这一点的相对坐标是5-4=1,6-3=3,就是1,3。另外,如果减完后的值是负的,结果就是负的。扩展资料:机床用的绝对坐标包括(铣床、车床、磨床、线切割)等,英文名是“ALE”,相对坐标的英文名是“INC”。用机床零点作为原点的坐标系。
绝对坐标系是用来建立“工件坐标系”的坐标系,其原点以机床坐标系为基准。而相对坐标系的原点以当前机床的位置作为原点。注:绝对坐标显示状态和相对坐标显示状态是分开的,在信息屏显示“ALE”字样时为绝对坐标显示方式,信息屏显示"INC"字样时为相对坐标显示方式。
3. 线切割机床坐标系
坐标输入是先输入X轴指数然后逗号再输入Y轴指数。
4. 激光切割机标记坐标
S1:将切割头运行到板材加工区域上方,并设置待加工板材的控制参数;
S2:在待加工板材上选定临边的定位点P1、P2和P3;
S3:将切割头运行至定位点位置,切割头沿CNC控制系统预设的运行逻辑进行移动,监测到切割头到达待加工板材的边缘后,切割头停止移动并抬起,锁定当前的坐标位置为板材的轮廓点;按照上述操作,依次通过定位点P1、P2、P3检测得到板材的轮廓点A、B、C;
S4:根据切割头的移动位移计算出切割起始点O;
S5:将切割头运行至O点位置,根据板材的加工参数进行板材切割。
5. 激光切割工件坐标系怎么设置
一、首先在CAD上画一条直线。
二、然后输入“br”,选择一个切断的直线对象。
三、然后选择完直线,并且系统默认点击的位置为第一个断点,然后选择第二个点,第一个点到第二个点间的线段被切断。
四、另外可以通过输入坐标确认第二个点的位置。
五、另外如果第一个点与第二个点重合,则线段会出现一个断点。CAD直线切断完成。
6. 激光切割机浮动坐标系
摘要: 这里详细介绍了发那克,三菱,西门子几种常用数控系统参考点工作原理、调整和设定方法,并举例说明参考点故障现象,解决方法。 关键词:参考点 相对位置检测系统 绝对位置检测系统 前言: 当数控机床更换、拆卸电机或编码器后,机床会有报警信息:编码器内机械绝对位置数据丢失了,机床回参考点后发现参考点和更换前发生了偏移,这就要求我们重新设定参考点,我们对了解参考点工作原理十分必要。 参考点是指当执行手动参考点回归或加工程序G28指令时机械所定位那一点,又名原点或零点。每台机床有一个参考点,需要也可以设置多个参考点,用于自动刀具交换(ATC)、自动拖盘交换(APC)等。G28指令执行快速复归点称为第一参考点(原点),G30指令复归点称为第二、第三或第四参考点,也称为返回浮动参考点。由编码器发出栅点信号或零标志信号所确定点称为电气原点。机械原点是基本机械坐标系基准点,机械零件一旦装配好,机械参考点也就建立了。使电气原点和机械原点重合,将使用一个参数进行设置,这个重合点就是机床原点。 机床配备位置检测系统一般有相对位置检测系统和绝对位置检测系统。相对位置检测系统关机后位置数据丢失,机床每次开机后都要求先回零点才可投入加工运行,一般使用挡块式零点回归。绝对位置检测系统电源切断时也能检测机械移动量,机床每次开机后不需要进行原点回归。关机后位置数据不会丢失,绝对位置检测功能执行各种数据核对,如检测器回馈量相互核对、机械固有点上绝对位置核对,具有很高可信性。当更换绝对位置检测器或绝对位置丢失时,应设定参考点,绝对位置检测系统一般使用无挡块式零点回归。 一: 使用相对位置检测系统参考点回归方式: 1、发那克系统: 1)、工作原理: 当手动或自动回机床参考点时,首先,回归轴以正方向快速移动,当挡块碰上参考点接近开关时,开始减速运行。当挡块离开参考点接近开关时,继续以FL速度移动。当走到相对编码器零位时,回归电机停止,并将此零点作为机床参考点。 2)、相关参数: 参数内容 系统0i/16i/18i/21i0 所有轴返回参考点方式: 0. 挡块、 1. 无挡块1002.10076 各轴返回参考点方式: 0. 挡块、 1. 无挡块1005.10391 各轴参考计数器容量18210570~0575 7570 7571 每轴栅格偏移量18500508~0511 0640 0642 7508 7509 是否使用绝对脉冲编码器作为位置检测器: 0. 、1. 是 1815.50021 7021 绝对脉冲编码器原点位置设定:0. 没有建立、 1. 建立1815.40022 7022 位置检测使用类型:0.内装式脉冲编码器、1. 分离式编码器、直线尺1815.10037 7037 快速进给加减速时间常数16200522 快速进给速度14200518~0521 FL速度14250534 手动快速进给速度14240559~0562 伺服回路增益18250517 3)、设定方法: a、 设定参数: 所有轴返回参考点方式=0; 各轴返回参考点方式=0; 各轴参考计数器容量,电机每转回馈脉冲数作为参考计数器容量设定; 是否使用绝对脉冲编码器作为位置检测器=0 ; 绝对脉冲编码器原点位置设定=0; 位置检测使用类型=0; 快速进给加减速时间常数、快速进给速度、FL速度、手动快速进给速度、伺服回路增益依实际情况进行设定。 b、 机床重启,回参考点。 c、 机床参考点与设定前不同,重新调整每轴栅格偏移量。 4)、故障举例: 一台0i-B机床X轴手动回参考点时出现90号报警(返回参考点位置异常)。 a、机床再回一次参考点,观察X轴移动情况,发现刚开始时X轴快速移动,速度很慢; b、检测诊断号#300,<128; d、 检查手动快速进给参数1424,设定正确; e、 检查倍率开关ROV1、ROV2信号,发现倍率开关坏,更换后机床正常。 2、三菱系统: 1)工作原理: 机床电源接通后第一次回归参考点,机械快速移动,当参考点检测开关接近参考点挡块时,机械减速并停止。然后,机械参考点挡块后,缓慢移动到第一个栅格点位置,这个点就是参考点。回参考点前,设定了参考点偏移参数,机械到达第一个栅格点后继续向前移动,移动到偏移量点,并把这个点作为参考点。 2)、相关参数: 参数内容 系统M60 M64 快速进给速度2025 慢行速度2026 参考点偏移量2027 栅罩量2028 栅间隔2029 参考点回归方向2030 3)、设定方法: a、设定参数: 参考点偏移量=0 栅罩量=0 栅间隔=滚珠导螺快速进给速度、慢行速度、参考点回归方向依实际情况进行设定。 b、重启电源,回参考点。 C、|报警/诊断|→|伺服|→|伺服监视(2)|,计下栅间隔和栅格量值。 d、计算栅罩量: 当栅间隔/2<栅格量时,栅罩量=栅格量-栅间隔/2 当栅间隔/2>栅格量时,栅罩量=栅格量+栅间隔/2 e、把计算值设定到栅罩量参数中。 f、重启电源,再次回参考点。 g、重复c、d过程,检查栅罩量设定值是否正确,否则重新设定。 h、需要,设定参考点偏移量。 4)、故障举例: 一台三菱M64系统钻削中心,Z轴回参考点时发生过行程报警。 a、 检查参考点检测开关信号,当移动到参考点挡块位置时,能够从“0”变为“1”; b、 检查栅罩量参数(2028),正常; 检查参考点偏移量参数(2027),正常; 检查参考点回归方向参数(2030),和其它同型号机床核对,发现由反方向“1”变成了同方向“0”,改正后,重启回参考点,正常。 3、西门子系统: 1)、工作原理: 机床回参考点时,回归轴以Vc速度快速向参考点文件块位置移动,当参考点开关碰上挡块后,开始减速并停止,然后反方向移动,退出参考点挡块位置,并以Vm速度移动,寻找到第一个零脉冲时,再以Vp速度移动Rv参考点偏移距离后停止,就把这个点作为 2)、相关参数: 参数内容 系统802D/810D/840D 返回参考点方向MD34010 寻找参考点开关速度(Vc)MD34020 寻找零脉冲速度(Vm)MD34040 寻找零脉冲方向MD34050 定位速度(Vp)MD34070 参考点偏移(Rv)MD34080 参考点设定位置(Rk)MD341003、设定方法: a、设定参数: 返回参考点方向参数、寻找零脉冲方向参数挡块安装方向等进行设定; 寻找参考点开关速度(Vc)参数设定时,要求该速度下碰到挡块后减速到“0”时,坐标轴能停止挡块上,不要冲过挡块; 参考点偏移(Rv)参数=0 b、机床重启,回参考点。 C、机床参考点与设定前不同,重新调整参考点偏移(Rv)参数。 4、故障举例: 一台西门子810D系统,机床每次参考点返回位置都不一致,从以下几项逐步进行排查: a、 伺服模块控制信号接触不良; b、电机与机械联轴节松动; C、参数点开关或挡块松动; d、参数设置不正确; е、位置编码器供电电压不低于4.8V; f、位置编码器有故障; g、位置编码器回馈线有干扰; 最后查到参考点挡块松动,拧紧螺丝后,重新试机,故障排除。 二: 绝对位置检测系统: 1. 发那克系统: 1)、工作原理: 绝对位置检测系统参考点回归比较简单,参考点方式下,按任意方向键,控制轴以参考点间隙初始设置方向运行,寻找到第一个栅格点后,就把这个点设置为参考点。 2)、相关参数: 参数内容 系统0i/16i/18i/21i0 所有轴返回参考点方式: 0. 挡块、 1. 无挡块1002.10076 各轴返回参考点方式: 0. 挡块、 1. 无挡块1005.10391 各轴参考计数器容量18210570~0575 7570 7571 每轴栅格偏移量18500508~0511 0640 0642 7508 7509 是否使用绝对脉冲编码器作为位置检测器: 0. 、1. 是 1815.50021 7021 绝对脉冲编码器原点位置设定:0. 没有建立、 1. 建立1815.40022 7022 位置检测使用类型:0.内装式脉冲编码器、1. 分离式编码器、直线尺1815.10037 7037 快速进给加减速时间常数16200522 快速进给速度14200518~0521 FL速度14250534 手动快速进给速度14240559~0562 伺服回路增益18250517 返回参考点间隙初始方向 0. 正 1. 负10060003 7003 0066 3)、设置方法: a、设定参数: 所有轴返回参考点方式=0; 各轴返回参考点方式=0; 各轴参考计数器容量,电机每转回馈脉冲数作为参考计数器容量设定; 是否使用绝对脉冲编码器作为位置检测器=0 ; 绝对脉冲编码器原点位置设定=0; 位置检测使用类型=0; 快速进给加减速时间常数、快速进给速度、FL速度、手动快速进给速度、伺服回路增益依实际情况进行设定; b、机床重启,手动回到参考点附近; c、是否使用绝对脉冲编码器作为位置检测器=1 ; 绝对脉冲编码器原点位置设定=1; e、机床重启; f、 机床参考点与设定前不同,重新调整每轴栅格偏移量。 2、三菱系统(M60、M64为例): 1)、无挡块机械碰压方式: a、设定参数: #2049.= 1 无档块机械碰压方式; #2054 电流极限; b、选择“绝对位置设定”画面,选择手轮或寸动模式,(也可选择自动初期化模式); C、“绝对位置设定”画面,选择“可碰压”; d、#0绝对位置设定=1 , #2原点设定:以基本机械坐标为准,设定参考点坐标值; e、移动控制轴,当控制轴碰压上机械挡块,给定时间内达到极限电流时,控制轴停止并反方向移动。b步选择手轮或寸动模式,则控制轴反方向移动移动到第一栅格点,这个点就是电气参考点;b步选择“自动初期化”模式,则第a步还要设置 #2005碰压速度参数和 #2056接近点值,此时控制轴反方向以 #2005(碰压速度)移动到 #2056(接近点)值停止,再以 #2055(碰压速度)向挡块移动,给定时间内达到极限电流时,控制轴停止并以反方向移动到第一栅格点,这个点就是电气参考点; g、重启电源。 2)、无挡块参考点方式调整: a、设定参数: #2049 = 2 无挡块参考点调整方式; #2050 = 0 正方向、 = 1 负方向; b、选择“绝对位置设定”画面,选择手轮或寸动模式; c、“绝对位置设定”画面,选择“无碰压”方式; d、#0绝对位置设定=1 , #2原点设定:以基本机械坐标为准,设定参考点坐标值; e、把控制轴移动到参考点附近。 f、#1 = 1,控制轴以 #2050设置方向移动,达到第一个栅格点时停止,把这个点设定为电气参考点。 g、重启电源。 3、 西门子系统(802D、810D、840D为例): 1)、调试; a、设置参数: MD34200=0.绝对编码器位置设定; MD34210=0.绝对编码器初始状态; b、选择“手动”模式,将控制轴移动到参考点附近; c、输入参数:MD34100,机床坐标位置; d、激活绝对编码器调整功能:MD34210=1.绝对编码器调整状态; e、按机床复位键,使机床参数生效; f、机床回归参考点; g、机床不移动,系统自动设置参数:34090. 参考点偏移量;34210. 绝对编码器设定完毕状态,屏幕上显示位置是MD34100设定位置。 2)、相关参数: 参数内容 系统 802D. 810D. 840D 参数点偏移量34090 机床坐标位置34100 绝对编码器位置设定34200 绝对编码器初始状态; 0.初始 1.调整 2.设定完成 34210 相对位置检测系统参考点回归中,机床第一次参考点回归后,执行手动参考点回归或加工程序G28指令时机械移动到参考点挡块位置并不减速,继续高速定位到事先存内存中参考点。机床下载PCL程序时将导致参考点位置丢失,PCL调试完毕后,再调试绝对值编码器参考点回归设定
7. 激光切割机 工件如何定位
1、控制激光头方向按键
首先看到面板上面的四个箭头方向键是用来控制激光头的移动方向的,很多时候想要让激光头移动到合适的位置,却不知道怎么移动。
其中“向前”按键代表的是激光头往上移动;“向后”按键代表的是激光头向下移动;“向左”按键代表的是激光头向左移动,“向右”按键代表是的向右移动。当然,还可以选择45°移动激光头(向后方向键+向右方向键)
2、菜单
然后看到菜单里面有着很多功能,这次以Z轴为例,Z轴是用来控制平台升降的,其中向右方向键代表的是平台下降,向左方向按键代表的是平台上升。当材料占据的空间较大的时候,可以巧用这个菜单中的升降平台的功能,让材料放置合适的位置,方便工作。
3、文件
到这里,可以把文件导入到机器里面,依次使用上面的步骤调整好激光头,按下“定位”键,再按下“边框”,确定机器工作的范围。最后按“启动/暂停”按钮,机器开始加工。
4、复位
接着就是看到“复位”按键,当机器出现异常的时候,可以直接按“复位”键,机器就会进入复位,此时可以在操作面板上面选择是否退出。
5、点射
点射键,主要是用来测试或者辅助定位。不少人发现光路偏了,或者想要测试激光头是否有出光,那么这个时候,可以利用这个点射的功能进行测试。
6、速度
当有时候激光头的走动很快或者很慢的时候,就应该想到是这个速度设置的问题。利用控制面板上面的速度键,可以设置激光头面板默认的速度。调制到合适的速度即可。
7、最后是最小功率和最大功率
当在加工工作的时候,往往会在机器上面设置一个机器工作的加工最小功率以及最大功率,保证激光在工作的时候会在这个值内运营,保障加工的效果。