布鲁克傅里叶红外光谱仪(傅里叶红外光谱仪应用)

海潮机械 2023-01-05 10:57 编辑:admin 175阅读

1. 傅里叶红外光谱仪应用

红外光谱原理概述

红外光谱与分子的结构密切相关,是研究表征分子结构的一种有效手段,与其它方法相比较,红外光谱由于对样品没有任何限制,它是公认的一种重要分析工具。在分子构型和构象研究、化学化工、物理、能源、材料、天文、气象、遥感、环境、地质、生物、医学、药物、农业、食品、法庭鉴定和工业过程控制等多方面的分析测定中都有十分广泛的应用。

红外光谱可以研究分子的结构和化学键,如力常数的测定和分子对称性等,利用红外光谱方法可测定分子的键长和键角,并由此推测分子的立体构型。根据所得的力常数可推知化学键的强弱,由简正频率计算热力学函数等。分子中的某些基团或化学键在不同化合物中所对应的谱带波数基本上是固定的或只在小波段范围内变化,因此许多有机官能团例如甲基、亚甲基、羰基,氰基,羟基,胺基等等在红外光谱中都有特征吸收,通过红外光谱测定,人们就可以判定未知样品中存在哪些有机官能团,这为最终确定未知物的化学结构奠定了基础。

由于分子内和分子间相互作用,有机官能团的特征频率会由于官能团所处的化学环境不同而发生微细变化,这为研究表征分子内、分子间相互作用创造了条件。

分子在低波数区的许多简正振动往往涉及分子中全部原子,不同的分子的振动方式彼此不同,这使得红外光谱具有像指纹一样高度的特征性,称为指纹区。利用这一特点,人们采集了成千上万种已知化合物的红外光谱,并把它们存入计算机中,编成红外光谱标准谱图库。

人们只需把测得未知物的红外光谱与标准库中的光谱进行比对,就可以迅速判定未知化合物的成份。

当代红外光谱技术的发展已使红外光谱的意义远远超越了对样品进行简单的常规测试并从而推断化合物的组成的阶段。红外光谱仪与其它多种测试手段联用衍生出许多新的分子光谱领域,例如,色谱技术与红外光谱仪联合为深化认识复杂的混合物体系中各种组份的化学结构创造了机会;把红外光谱仪与显微镜方法结合起来,形成红外成像技术,用于研究非均相体系的形态结构,由于红外光谱能利用其特征谱带有效地区分不同化合物,这使得该方法具有其它方法难以匹敌的化学反差。

另外,随着电子技术的日益进步,半导体检测器已实现集成化,焦平面阵列式检测器已商品化,它有效地推动了红外成像技术的发展,也为未来发展非傅里叶变换红外光谱仪创造了契机。随着同步辐射技术的发展和广泛应用,现已出现用同步辐射光作为光源的红外光谱仪,由于同步辐射光的强度比常规光源高五个数量级,这能有效地提高光谱的信噪比和分辨率,特别值得指出的是,近年来自由电子激光技术为人们提供了一种单色性好,亮度高,波长连续可调的新型红外光源,使之与近场技术相结合,可使得红外成像技无论是在分辨率和化学反差两方面皆得到有效提高。

2. 傅里叶红外光谱仪百科

英国Pyreos公司是一家专业的薄膜热释电红外探测器生产厂商,其产品主要是各种规格的热释电传感器,可以覆盖1.3um-25um的红外谱段,灵敏度高,频率响应特性好,拥有14项专利技术,性能优良。基于其独有的薄膜热释电探测技术(Thin-Film Pyroelectric Technology),这项技术由德国西门子公司于上世纪九十年代初开发出来,历经十余年的研发和改进,2008年被Pyreos公司收购,并开始大批量生产基于该技术的红外探测器。

产品的主要应用领域为:

傅里叶红外光谱仪(FTIR)

气体探测

火灾预警

人流量计数

3. 傅里叶红外光谱仪作用

傅立叶红外光谱仪最核心的部分是 迈克尔逊干涉仪。可以说没有干涉仪就没有傅立叶变换红外光谱。

正是因为红外光源经过迈克尔逊干涉仪发生多色光相干,经过样品吸收之后,检测器检测到含有样品信息的红外干涉光的干涉图信号,再经过计算机将干涉图信号经过傅立叶变换,才转换成红外光谱。

其余的部件,如:检测器,光源,光学反射镜,采集卡,计算机等。

光源:用于产生宽带的红外光,样品吸收光源产生的红外光后引起样品分子的振动态跃迁,从而引其透过样品的红外光在相应波长上的透过强度的变化,这也是红外光谱能检测分子振动特征峰的理论来源。

光学反射镜:用于改变红外光的光路 检测器:用于检测透过样品的红外吸收信号,并将光信号转换成电信号传送给计算机的采集卡。

采集卡:用于采集检测器检测到的信号,并将信号存储、处理成光谱。

计算机:用于控制光谱仪的运行,协调迈克尔逊干涉仪,检测器和采集卡的运行、数据采集和处理。

4. 傅里叶红外光谱仪使用方法

产品简介傅里叶变换红外光谱仪(Fourier Transform Infrared Spectrometer,简写为FTIR Spectrometer),简称为傅里叶红外光谱仪。它不同于色散型红外分光的原理,是基于对干涉后的红外光进行傅里叶变换的原理而开发的红外光谱仪,主要由红外光源、光阑、干涉仪(分束器、动镜、定镜)、样品室、检测器以及各种红外反射镜、激光器、控制电路板和电源组成。

可以对样品进行定性和定量分析,广泛应用于医药化工、地矿、石油、煤炭、环保、海关、宝石鉴定、刑侦鉴定等领域。

5. 傅里叶红外吸收光谱仪

傅里叶红外光谱仪使用操作:

  1. 开机前先检查各个部件是否连接好,处于零点状态。

  2. 打开稳压电源开关,稍等片刻,当电压稳定在220V后,打开主机电源,预热一至二小时方可进行正常实验操作。

  3. 实验时固体样品可用压片法先制样,KBr与样品按100:1的质量比混合后用玛瑙研钵于红外灯下研细,然后移入压片机中压片,将片子固定在样品架上方可测试。

  4. 液体样品可用液膜法测定,将1-2滴试样直接滴放在可拆池的一块盐片上,然后盖上另一块盐片,借助池架上的固紧螺丝拧紧两盐片后方可测试。

  5. 打开响应的软件,先采集背景值,然后将样品架插入样品池中采集样品值,红外扫描32秒后,将谱图切入当前窗口对其进行处理。

  6. 傅里叶红外光谱仪实验完毕后,关闭电源,使仪器恢复原状,并进行必要的整理和清洁工作。

6. 傅里叶红外光谱技术

是问固体样品常用的测试方法?KBR压片、石蜡油、薄膜 棱镜和光栅光谱仪、傅里叶变换红外光谱仪 近红外光谱法,高效液相色谱法及容量分析法

7. 傅里叶红外光谱仪应用的是

红外光谱 [1] (infrared spectra),以波长或波数为横坐标 以强度或其他随波长变化的性质为纵坐标所得到的反映红外射线与物质相互作用的谱图。

按红外射线的波长范围,可粗略地分为近红外光谱(波段为0.8~2.5微米)、中红外光谱(2.5~25微米)和远红外光谱(25~1000微米)。

对物质自发发射或受激发射的红外射线进行分光,可得到红外发射光谱,物质的红外发射光谱主要决定于物质的温度和化学组成;对被物质所吸收的红外射线进行分光,可得到红外吸收光谱。

每种分子都有由其组成和结构决定的独有的红外吸收光谱,它是一种分子光谱。分子的红外吸收光谱属于带状光谱。原子也有红外发射和吸收光谱,但都是线状光谱。 量子场论或量子电动力学可以正确地描述和解释红外射线(一种电磁辐射)与物质的相互作用。

若采用半经典的理论处理方法,即对组成物质的分子和原子作为量子力学体系来处理,辐射场作为一种经典物理中的电磁波并忽略其光子的特征,则分子红外光谱是由分子不停地作振动和转动而产生的。

分子振动是指分子中各原子在平衡位置附近作相对运动,多原子分子可组成多种振动模式。

当孤立分子中各原子以同一频率、同一相位在平衡位置附近作简谐振动时,这种振动方式称简正振动。含N个原子的分子应有3N-6个简正振动方式;如果是线性分子,只有3N-5个简正振动方式。图中示出非线性3原子分子仅有的3种简正振动模式。

分子的转动指的是分子绕质心进行的运动。分子振动和转动的能量不是连续的,而是量子化的。

当分子由一种振动(或转动)状态跃迁至另一种振动(或转动)状态时,就要吸收或发射与其能级差相应的光。 研究红外光谱的方法主要是吸收光谱法。使用的光谱有两种类型。一种是单通道或多通道测量的棱镜或光栅色散型光谱仪,另一种是利用双光束干涉原理并进行干涉图的傅里叶变换数学处理的非色散型的傅里叶变换红外光谱仪。 红外光谱具有高度的特征性,不但可以用来研究分子的结构和化学键,如力常数的测定等,而且广泛地用于表征和鉴别各种化学物种。 红外识谱歌 红外可分远中近,中红特征指纹区, 1300来分界,注意横轴划分异。 看图要知红外仪,弄清物态液固气。 样品来源制样法,物化性能多联系。 识图先学饱和烃,三千以下看峰形。 2960、2870是甲基,2930、2850亚甲峰。 1470碳氢弯,1380甲基显。

二个甲基同一碳,1380分二半。 面内摇摆720,长链亚甲亦可辨。

烯氢伸展过三千,排除倍频和卤烷。

末端烯烃此峰强,只有一氢不明显。 化合物,又键偏,~1650会出现。

烯氢面外易变形,1000以下有强峰。 910端基氢,再有一氢990。 顺式二氢690,反式移至970; 单氢出峰820,干扰顺式难确定。

炔氢伸展三千三,峰强很大峰形尖。

三键伸展二千二,炔氢摇摆六百八。

芳烃呼吸很特征,1600~1430。 1650~2000,取代方式区分明。 900~650,面外弯曲定芳氢。

五氢吸收有两峰,700和750; 四氢只有750,二氢相邻830; 间二取代出三峰,700、780,880处孤立氢 醇酚羟基易缔合,三千三处有强峰。 C-O伸展吸收大,伯仲叔醇位不同。 1050伯醇显,1100乃是仲, 1150叔醇在,1230才是酚。 1110醚链伸,注意排除酯酸醇。

若与π键紧相连,二个吸收要看准, 1050对称峰,1250反对称。 苯环若有甲氧基,碳氢伸展2820。 次甲基二氧连苯环,930处有强峰, 环氧乙烷有三峰,1260环振动, 九百上下反对称,八百左右最特征。 缩醛酮,特殊醚,1110非缩酮。 酸酐也有C-O键,开链环酐有区别, 开链强宽一千一,环酐移至1250。 羰基伸展一千七,2720定醛基。 吸电效应波数高,共轭则向低频移。 张力促使振动快,环外双键可类比。 二千五到三千三,羧酸氢键峰形宽, 920,钝峰显,羧基可定二聚酸、 酸酐千八来偶合,双峰60严相隔, 链状酸酐高频强,环状酸酐高频弱。 羧酸盐,偶合生,羰基伸缩出双峰, 1600反对称,1400对称峰。 1740酯羰基,何酸可看碳氧展。 1180甲酸酯,1190是丙酸, 1220乙酸酯,1250芳香酸。 1600兔耳峰,常为邻苯二甲酸。 氮氢伸展三千四,每氢一峰很分明。 羰基伸展酰胺I,1660有强峰; N-H变形酰胺II,1600分伯仲。 伯胺频高易重叠,仲酰固态1550; 碳氮伸展酰胺III,1400强峰显。 胺尖常有干扰见,N-H伸展三千三, 叔胺无峰仲胺单,伯胺双峰小而尖。 1600碳氢弯,芳香仲胺千五偏。 八百左右面内摇,确定最好变成盐。 伸展弯曲互靠近,伯胺盐三千强峰宽, 仲胺盐、叔胺盐,2700上下可分辨, 亚胺盐,更可怜,2000左右才可见。 硝基伸缩吸收大,相连基团可弄清。 1350、1500,分为对称反对称。 氨基酸,成内盐,3100~2100峰形宽。 1600、1400酸根展,1630、1510碳氢弯。 盐酸盐,羧基显,钠盐蛋白三千三。 矿物组成杂而乱,振动光谱远红端。 钝盐类,较简单,吸收峰,少而宽。 注意羟基水和铵,先记几种普通盐。 1100是硫酸根,1380硝酸盐, 1450碳酸根,一千左右看磷酸。 硅酸盐,一峰宽,1000真壮观。 勤学苦练多实践,红外识谱不算难。 红外光谱发展史 雨后天空出现的彩虹,是人类经常观测到的自然光谱。而真正意义上对光谱的研究是从英国科学家牛顿(Newton) 开始的。1666 年牛顿证明一束白光可分为一系列不同颜色的可见光,而这一系列的光投影到一个屏幕上出现了一条从紫色到红色的光带。牛顿导入“光谱”(spectrum)一词来描述这一现象。牛顿的研究是光谱科学开端的标志。 从牛顿之后人类对光的认识逐渐从可见光区扩展到红外和紫外区。1800 年英国科学家W. Herschel 将来自太阳的辐射构成一副与牛顿大致相同的光谱,然后将一支温度计通过不同颜色的光,并且用另外一支不在光谱中的温度计作为参考。他发现当温度计从光谱的紫色末端向红色末端移动时,温度计的读数逐渐上升。特别令人吃惊的是当温度计移动到红色末端之外的区域时,温度计上的读数达到最高。这个试验的结果有两重含义,首先是可见光区域红色末端之外还有看不见的其他辐射区域存在,其次是这种辐射能够产生热。由于这种射线存在的区域在可见光区末端以外而被称为红外线。(1801 年德国科学家J.W. Ritter 考察太阳光谱的另外一端,即紫色端时发现超出紫色端的区域内有某种能量存在并且能使AgCl 产生化学反应,该试验导致了紫外线的发现。 1881年Abney 和Festing 第一次将红外线用于分子结构的研究。他们Hilger光谱仪拍下了46个有机液体的从0.7到1.2微米区域的红外吸收光谱。由于这种仪器检测器的限制,所能够记录下的光谱波长范围十分有限。随后的重大突破是测辐射热仪的发明。1880年天文学家Langley在研究太阳和其他星球发出的热辐射时发明一种检测装置。该装置由一根细导线和一个线圈相连,当热辐射抵达导线时能够引起导线电阻非常微小的变化。而这种变化的大小与抵达辐射的大小成正比。这就是测辐射热仪的核心部分。用该仪器突破了照相的限制,能够在更宽的波长范围检测分子的红外光谱。采用NaCl作棱镜和测辐射热仪作检测器,瑞典科学家Angstrem第一次记录了分子的基本振动(从基态到第一激发态)频率。1889年Angstrem首次证实尽管CO和CO2都是由碳原子和氧原子组成,但因为是不同的气体分子而具有不同的红外光谱图。这个试验最根本的意义在于它表明了红外吸收产生的根源是分子而不是原子。而整个分子光谱学科就是建立在这个基础上的。不久Julius发表了20个有机液体的红外光谱图,并且将在3000cm-1的吸收带指认为甲基的特征吸收峰。这是科学家们第一次将分子的结构特征和光谱吸收峰的位置直接联系起来。图1是液体水和重水部分红外光谱图,主要为近红外部分。图中可观察到水分子在739和970nm处有吸收峰存在,这些峰都处在可见光区红色一端之外。由于氢键作用,液体水的红外光谱图比气态水的谱图要复杂得多。 红外光谱仪的研制可追溯的20 世纪初期。1908 年Coblentz 制备和应用了用氯化钠晶体为棱镜的红外光谱议;1910 年Wood 和Trowbridge6 研制了小阶梯光栅红外光谱议;1918 年Sleator 和Randall 研制出高分辨仪器。20 世纪40 年代开始研究双光束红外光谱议。1950 年由美国PE 公司开始商业化生产名为Perkin-Elmer 21 的双光束红外光谱议。与单光束光谱仪相比,双光束红外光谱议不需要由经过专门训练的光谱学家进行操作,能够很快的得到光谱图。因此Perkin-Elmer 21 很快在美国畅销。Perkin-Elmer 21 的问世大大的促进了红外光谱仪的普及。 现代红外光谱议是以傅立叶变换为基础的仪器。该类仪器不用棱镜或者光栅分光,而是用干涉仪得到干涉图,采用傅立叶变换将以时间为变量的干涉图变换为以频率为变量的光谱图。傅立叶红外光谱仪的产生是一次革命性的飞跃。与传统的仪器相比,傅立叶红外光谱仪具有快速、高信噪比和高分辨率等特点。更重要的是傅立叶变换催生了许多新技术,例如步进扫描、时间分辨和红外成像等。这些新技术大大的拓宽了红外的应用领域,使得红外技术的发展产生了质的飞跃。如果采用分光的办法,这些技术是不可能实现的。这些技术的产生,大大的拓宽了红外技术的应用领域。 是用红外成像技术得到的地球表面温度分布和地球大气层中水蒸气含量图。没有傅立叶变换技术,不可能得到这样的图像。图1.2 Perkin-Elmer 21 双光束红外光谱议。该仪器是由美国Perkin-Elmer 公司1950 开始制造,是最早期商业化生产的双光束红外光谱议。 红外光谱的理论解释是建立在量子力学和群论的基础上的。1900 年普朗克在研究黑体辐射问题时,给出了著名的Plank 常数h, 表示能量的不连续性。量子力学从此走上历史舞台。1911 年W Nernst 指出分子振动和转动的运动形态的不连续性是量子理论的必然结果。1912 年丹麦物理化学家Niels Bjerrum 提出HCl 分子的振动是带负电的Cl 原子核带正电的H 原子之间的相对位移。分子的能量由平动、转动和振动组成,并且转动能量量子化的理论,该理论被称为旧量子理论或者半经典量子理论。后来矩阵、群论等数学和物理方法被应用于分子光谱理论。随着现代科学的不断发展,分子光谱的理论也在不断的发展和完善。分子光谱理论和应用的研究还在发展之中。多维分子光谱的理论和应用就是研究方向之一。