1. 近红外光谱仪器
太赫兹(Tera Hertz,THz)是波动频率单位之一,又称为太赫,或太拉赫兹。等于1,000,000,000,000Hz,通常用于表示电磁波频率。太赫兹是一种新的、有很多独特优点的辐射源;太赫兹技术是一个非常重要的交叉前沿领域,给技术创新、国民经济发展和国家安全提供了一个非常诱人的机遇可能引发科学技术的革命性发展。
特点
量子能量和黑体温度很低。
许多生物大分子的振动和旋转频率都处于THz波段,所以利用THz波可以获得丰富的生物及其材料信息。
THz辐射能以很小的衰减穿透如陶瓷、脂肪、碳板、布料、塑料等物质。
THz的时域频谱信噪比很高,使THz非常适用于成像应用。
瞬时带宽很宽(0.1~10THz),利于高速通信。
2. 近红外光谱仪器主要组成包括
红外光谱 [1] (infrared spectra),以波长或波数为横坐标 以强度或其他随波长变化的性质为纵坐标所得到的反映红外射线与物质相互作用的谱图。
按红外射线的波长范围,可粗略地分为近红外光谱(波段为0.8~2.5微米)、中红外光谱(2.5~25微米)和远红外光谱(25~1000微米)。
对物质自发发射或受激发射的红外射线进行分光,可得到红外发射光谱,物质的红外发射光谱主要决定于物质的温度和化学组成;对被物质所吸收的红外射线进行分光,可得到红外吸收光谱。
每种分子都有由其组成和结构决定的独有的红外吸收光谱,它是一种分子光谱。分子的红外吸收光谱属于带状光谱。原子也有红外发射和吸收光谱,但都是线状光谱。 量子场论或量子电动力学可以正确地描述和解释红外射线(一种电磁辐射)与物质的相互作用。
若采用半经典的理论处理方法,即对组成物质的分子和原子作为量子力学体系来处理,辐射场作为一种经典物理中的电磁波并忽略其光子的特征,则分子红外光谱是由分子不停地作振动和转动而产生的。
分子振动是指分子中各原子在平衡位置附近作相对运动,多原子分子可组成多种振动模式。
当孤立分子中各原子以同一频率、同一相位在平衡位置附近作简谐振动时,这种振动方式称简正振动。含N个原子的分子应有3N-6个简正振动方式;如果是线性分子,只有3N-5个简正振动方式。图中示出非线性3原子分子仅有的3种简正振动模式。
分子的转动指的是分子绕质心进行的运动。分子振动和转动的能量不是连续的,而是量子化的。
当分子由一种振动(或转动)状态跃迁至另一种振动(或转动)状态时,就要吸收或发射与其能级差相应的光。 研究红外光谱的方法主要是吸收光谱法。使用的光谱有两种类型。一种是单通道或多通道测量的棱镜或光栅色散型光谱仪,另一种是利用双光束干涉原理并进行干涉图的傅里叶变换数学处理的非色散型的傅里叶变换红外光谱仪。 红外光谱具有高度的特征性,不但可以用来研究分子的结构和化学键,如力常数的测定等,而且广泛地用于表征和鉴别各种化学物种。 红外识谱歌 红外可分远中近,中红特征指纹区, 1300来分界,注意横轴划分异。 看图要知红外仪,弄清物态液固气。 样品来源制样法,物化性能多联系。 识图先学饱和烃,三千以下看峰形。 2960、2870是甲基,2930、2850亚甲峰。 1470碳氢弯,1380甲基显。
二个甲基同一碳,1380分二半。 面内摇摆720,长链亚甲亦可辨。
烯氢伸展过三千,排除倍频和卤烷。
末端烯烃此峰强,只有一氢不明显。 化合物,又键偏,~1650会出现。
烯氢面外易变形,1000以下有强峰。 910端基氢,再有一氢990。 顺式二氢690,反式移至970; 单氢出峰820,干扰顺式难确定。
炔氢伸展三千三,峰强很大峰形尖。
三键伸展二千二,炔氢摇摆六百八。
芳烃呼吸很特征,1600~1430。 1650~2000,取代方式区分明。 900~650,面外弯曲定芳氢。
五氢吸收有两峰,700和750; 四氢只有750,二氢相邻830; 间二取代出三峰,700、780,880处孤立氢 醇酚羟基易缔合,三千三处有强峰。 C-O伸展吸收大,伯仲叔醇位不同。 1050伯醇显,1100乃是仲, 1150叔醇在,1230才是酚。 1110醚链伸,注意排除酯酸醇。
若与π键紧相连,二个吸收要看准, 1050对称峰,1250反对称。 苯环若有甲氧基,碳氢伸展2820。 次甲基二氧连苯环,930处有强峰, 环氧乙烷有三峰,1260环振动, 九百上下反对称,八百左右最特征。 缩醛酮,特殊醚,1110非缩酮。 酸酐也有C-O键,开链环酐有区别, 开链强宽一千一,环酐移至1250。 羰基伸展一千七,2720定醛基。 吸电效应波数高,共轭则向低频移。 张力促使振动快,环外双键可类比。 二千五到三千三,羧酸氢键峰形宽, 920,钝峰显,羧基可定二聚酸、 酸酐千八来偶合,双峰60严相隔, 链状酸酐高频强,环状酸酐高频弱。 羧酸盐,偶合生,羰基伸缩出双峰, 1600反对称,1400对称峰。 1740酯羰基,何酸可看碳氧展。 1180甲酸酯,1190是丙酸, 1220乙酸酯,1250芳香酸。 1600兔耳峰,常为邻苯二甲酸。 氮氢伸展三千四,每氢一峰很分明。 羰基伸展酰胺I,1660有强峰; N-H变形酰胺II,1600分伯仲。 伯胺频高易重叠,仲酰固态1550; 碳氮伸展酰胺III,1400强峰显。 胺尖常有干扰见,N-H伸展三千三, 叔胺无峰仲胺单,伯胺双峰小而尖。 1600碳氢弯,芳香仲胺千五偏。 八百左右面内摇,确定最好变成盐。 伸展弯曲互靠近,伯胺盐三千强峰宽, 仲胺盐、叔胺盐,2700上下可分辨, 亚胺盐,更可怜,2000左右才可见。 硝基伸缩吸收大,相连基团可弄清。 1350、1500,分为对称反对称。 氨基酸,成内盐,3100~2100峰形宽。 1600、1400酸根展,1630、1510碳氢弯。 盐酸盐,羧基显,钠盐蛋白三千三。 矿物组成杂而乱,振动光谱远红端。 钝盐类,较简单,吸收峰,少而宽。 注意羟基水和铵,先记几种普通盐。 1100是硫酸根,1380硝酸盐, 1450碳酸根,一千左右看磷酸。 硅酸盐,一峰宽,1000真壮观。 勤学苦练多实践,红外识谱不算难。 红外光谱发展史 雨后天空出现的彩虹,是人类经常观测到的自然光谱。而真正意义上对光谱的研究是从英国科学家牛顿(Newton) 开始的。1666 年牛顿证明一束白光可分为一系列不同颜色的可见光,而这一系列的光投影到一个屏幕上出现了一条从紫色到红色的光带。牛顿导入“光谱”(spectrum)一词来描述这一现象。牛顿的研究是光谱科学开端的标志。 从牛顿之后人类对光的认识逐渐从可见光区扩展到红外和紫外区。1800 年英国科学家W. Herschel 将来自太阳的辐射构成一副与牛顿大致相同的光谱,然后将一支温度计通过不同颜色的光,并且用另外一支不在光谱中的温度计作为参考。他发现当温度计从光谱的紫色末端向红色末端移动时,温度计的读数逐渐上升。特别令人吃惊的是当温度计移动到红色末端之外的区域时,温度计上的读数达到最高。这个试验的结果有两重含义,首先是可见光区域红色末端之外还有看不见的其他辐射区域存在,其次是这种辐射能够产生热。由于这种射线存在的区域在可见光区末端以外而被称为红外线。(1801 年德国科学家J.W. Ritter 考察太阳光谱的另外一端,即紫色端时发现超出紫色端的区域内有某种能量存在并且能使AgCl 产生化学反应,该试验导致了紫外线的发现。 1881年Abney 和Festing 第一次将红外线用于分子结构的研究。他们Hilger光谱仪拍下了46个有机液体的从0.7到1.2微米区域的红外吸收光谱。由于这种仪器检测器的限制,所能够记录下的光谱波长范围十分有限。随后的重大突破是测辐射热仪的发明。1880年天文学家Langley在研究太阳和其他星球发出的热辐射时发明一种检测装置。该装置由一根细导线和一个线圈相连,当热辐射抵达导线时能够引起导线电阻非常微小的变化。而这种变化的大小与抵达辐射的大小成正比。这就是测辐射热仪的核心部分。用该仪器突破了照相的限制,能够在更宽的波长范围检测分子的红外光谱。采用NaCl作棱镜和测辐射热仪作检测器,瑞典科学家Angstrem第一次记录了分子的基本振动(从基态到第一激发态)频率。1889年Angstrem首次证实尽管CO和CO2都是由碳原子和氧原子组成,但因为是不同的气体分子而具有不同的红外光谱图。这个试验最根本的意义在于它表明了红外吸收产生的根源是分子而不是原子。而整个分子光谱学科就是建立在这个基础上的。不久Julius发表了20个有机液体的红外光谱图,并且将在3000cm-1的吸收带指认为甲基的特征吸收峰。这是科学家们第一次将分子的结构特征和光谱吸收峰的位置直接联系起来。图1是液体水和重水部分红外光谱图,主要为近红外部分。图中可观察到水分子在739和970nm处有吸收峰存在,这些峰都处在可见光区红色一端之外。由于氢键作用,液体水的红外光谱图比气态水的谱图要复杂得多。 红外光谱仪的研制可追溯的20 世纪初期。1908 年Coblentz 制备和应用了用氯化钠晶体为棱镜的红外光谱议;1910 年Wood 和Trowbridge6 研制了小阶梯光栅红外光谱议;1918 年Sleator 和Randall 研制出高分辨仪器。20 世纪40 年代开始研究双光束红外光谱议。1950 年由美国PE 公司开始商业化生产名为Perkin-Elmer 21 的双光束红外光谱议。与单光束光谱仪相比,双光束红外光谱议不需要由经过专门训练的光谱学家进行操作,能够很快的得到光谱图。因此Perkin-Elmer 21 很快在美国畅销。Perkin-Elmer 21 的问世大大的促进了红外光谱仪的普及。 现代红外光谱议是以傅立叶变换为基础的仪器。该类仪器不用棱镜或者光栅分光,而是用干涉仪得到干涉图,采用傅立叶变换将以时间为变量的干涉图变换为以频率为变量的光谱图。傅立叶红外光谱仪的产生是一次革命性的飞跃。与传统的仪器相比,傅立叶红外光谱仪具有快速、高信噪比和高分辨率等特点。更重要的是傅立叶变换催生了许多新技术,例如步进扫描、时间分辨和红外成像等。这些新技术大大的拓宽了红外的应用领域,使得红外技术的发展产生了质的飞跃。如果采用分光的办法,这些技术是不可能实现的。这些技术的产生,大大的拓宽了红外技术的应用领域。 是用红外成像技术得到的地球表面温度分布和地球大气层中水蒸气含量图。没有傅立叶变换技术,不可能得到这样的图像。图1.2 Perkin-Elmer 21 双光束红外光谱议。该仪器是由美国Perkin-Elmer 公司1950 开始制造,是最早期商业化生产的双光束红外光谱议。 红外光谱的理论解释是建立在量子力学和群论的基础上的。1900 年普朗克在研究黑体辐射问题时,给出了著名的Plank 常数h, 表示能量的不连续性。量子力学从此走上历史舞台。1911 年W Nernst 指出分子振动和转动的运动形态的不连续性是量子理论的必然结果。1912 年丹麦物理化学家Niels Bjerrum 提出HCl 分子的振动是带负电的Cl 原子核带正电的H 原子之间的相对位移。分子的能量由平动、转动和振动组成,并且转动能量量子化的理论,该理论被称为旧量子理论或者半经典量子理论。后来矩阵、群论等数学和物理方法被应用于分子光谱理论。随着现代科学的不断发展,分子光谱的理论也在不断的发展和完善。分子光谱理论和应用的研究还在发展之中。多维分子光谱的理论和应用就是研究方向之一。
3. 近红外光谱仪器根据分光原理的不同,可以分为哪些类型
主要使用为红外分光光度计,。它是一种用棱镜或光栅进行分光的红外光谱仪。由光源发出的红外线分成完全对称的两束光:参考光束与样品光束。它们经半圆型调制镜调制,交替地进入单色仪的狭缝,通过棱镜或光栅分光后由热电偶检测两束光的强度差。当样品光束的光路中没有样品吸收时,热电偶不输出信号。
一旦放入测试样品,样品吸收红外光,两束光有强度差产生,热电偶便有约10Hz的信号输出,经过放大后输至电机,调节参考光束光路上的光楔,使两束光的强度重新达到平衡,由笔的记录位置直接指出了某一波长的样品透射率,波数的连续变化就自动记录了样品的红外吸收光谱或透射光谱。
红外光谱的测绘原理是,用一定频率的红外线聚焦照射被分析的试样,如果分子中某个基团的振动频率与照射红外线相同就会产生共振,这个基团就吸收一定频率的红外线,把分子吸收的红外线的情况用仪器记录下来,便能得到全面反映试样成份特征的光谱,从而推测化合物的类型和结构。IR光谱主要是定性技术,但是随着比例记录电子装置的出现,也能迅速而准确地进行定量分析。
4. 近红外光谱仪器工作原理
红外光谱仪是利用物质对不同波长的红外辐射的吸收特性,进行分子结构和化学组成分析的仪器。红外光谱仪通常由光源,单色器,探测器和计算机处理信息系统组成。根据分光装置的不同,分为色散型和干涉型。
对色散型双光路光学零位平衡红外分光光度计而言,当样品吸收了一定频率的红外辐射后,分子的振动能级发生跃迁,透过的光束中相应频率的光被减弱,造成参比光路与样品光路相应辐射的强度差,从而得到所测样品的红外光谱
5. 近红外光谱仪器分类
红外线是太阳光线中众多不可见光线中的一种,由德国科学家霍胥尔于1800年发现,又称为红外热辐射,太阳光谱上红外线的波长大于可见光线,波长为0。75~1000μm。红外线可分为三部分,即近红外线,波长为0。
75~1。50μm之间;中红外线,波长为1。50~ 0μm之间;远红外线,波长为 0~l000μm 之间。
真正的红外线夜视仪是光电倍增管成像,与望远镜原理全完不同,白天不能使用,价格昂贵且需电源才能工作。
在光谱中波长自0。76至400微米的一段称为红外线,红外线是不可见光线。所有高于绝对零度(-273℃)的物质都可以产生红外线。现代物理学称之为热射线。 医用红外线可分为两类:近红外线与远红外线。
近红外线或称短波红外线,波长0。76~1。5微米,穿入人体组织较深,约5~10毫米;远红外线或称长波红外线,波长1。5~400微米,多被表层皮肤吸收,穿透组织深度小于2毫米。
人体对红外线的反射和吸收
编辑本段
红外线照射体表后,一部分被反射,另一部分被皮肤吸收。
皮肤对红外线的反射程度与色素沉着的状况有关,用波长0。9微米的红外线照射时,无色素沉着的皮肤反射其能量约60%;而有色素沉着的皮肤反射其能量约40%。长波红外线(波长1。
5微米以上)照射时,绝大部分被反射和为浅层皮肤组织吸收,穿透皮肤的深度仅达0。05~2毫米,因而只能作用到皮肤的表层组织;短波红外线(波长1。 5微米以内)以及红色光的近红外线部分透入组织最深,穿透深度可达10毫米,能直接作用到皮肤的血管、淋巴管、神经末梢及其他皮下组织。
红外线红斑
编辑本段
足够强度的红外线照射皮肤时,可出现红外线红斑,停止照射不久红斑即消失。大剂量红外线多次照射皮肤时,可产生褐色大理石样的色素沉着,这与热作用加强了血管壁基底细胞层中黑色素细胞的色素形成有关。
红外线的治疗作用
编辑本段
红外线治疗作用的基础是温热效应。在红外线照射下,组织温度升高,毛细血管扩张,血流加快,物质代谢增强,组织细胞活力及再生能力提高。红外线治疗慢性炎症时,改善血液循环,增加细胞的吞噬功能,消除肿胀,促进炎症消散。
红外线可降低神经系统的兴奋性,有镇痛、解除横纹肌和平滑肌痉挛以及促进神经功能恢复等作用。 在治疗慢性感染性伤口和慢性溃疡时,改善组织营养,消除肉芽水肿,促进肉芽生长,加快伤口愈合。
红外线照射有减少烧伤创面渗出的作用。红外线还经常用于治疗扭挫伤,促进组织肿张和血肿消散以及减轻术后粘连,促进瘢痕软化,减轻瘢痕挛缩等。
红外线对眼的作用
编辑本段
由于眼球含有较多的液体,对红外线吸收较强,因而一定强度的红外线直接照射眼睛时可引起白内障。
白内障的产生与短波红外线的作用有关;波长大于1。5微米的红外线不引起白内障。
光浴对机体的作用
编辑本段
光浴的作用因素是红外线、可见光线和热空气。光浴时,可使较大面积,甚至全身出汗,从而减轻肾脏的负担,并可改善肾脏的血液循环,有利于肾功能的恢复。
光浴作用可使血红蛋白、红细胞、中性粒细胞、淋巴细胞、嗜酸粒细胞增加,轻度核左移;加强免疫力。 局部浴可改善神经和肌肉的血液供应和营养,因而可促进其功能恢复正常。全身光浴可明显地影响体内的代谢过程,增加全身热调节的负担;对植物神经系统和心血管系统也有一定影响。
红外线光源
编辑本段
1。 红外线辐射器
将电阻丝缠在瓷棒上,通电后电阻丝产热,使罩在电阻丝外的碳棒温度升高(一般不超过500℃),发射长波红外线为主。
红外线辐射器有立地式和手提式两种。
立地式红外线辐射器的功率可达600~1000瓦或更大。
近年我国一些地区制成远红外辐射器供医用,例如有用高硅氧为元件,制成远红外辐射器。
2。 白炽灯
在医疗中广泛应用各种不同功率的白炽灯泡做为红外线光源。
灯泡内的钨丝通电后温度可达2000~2500℃。
白炽灯用于光疗时的形式
立地式白炽灯:用功率为250~1000w的白炽灯泡,在反射罩间装一金属网,以为防护。
立地式白炽灯,通常称为太阳灯。
手提式白炽灯:用较小功率(多为200w以下)的白炽灯泡,安在一个小的反射罩内,反射罩固定在小的支架上。
3。光浴装置
可分局部或全身照射用二种。
根据光浴箱的大小不同,在箱内安装40~60w的灯泡6~30个不等。光浴箱呈半圆形,箱内固定灯泡的部位可加小的金属反射罩。全身光浴箱应附温度计,以便观察箱内温度,随时调节。
红外线治疗的操作方法
编辑本段
1。
患者取适当体位,裸露照射部位。
2。 检查照射部位对温热感是否正常。
3。将灯移至照射部位的上方或侧方,距离一般如下:
功率500w以上,灯距应在50~60cm以上;功率250~300w,灯距在30~40cm;功率200w以下,灯距在20cm左右。
4。应用局部或全身光浴时,光浴箱的两端需用布单遮盖。通电后3~5分钟,应询问患者的温热感是否适宜;光浴箱内的温度应保持在40~50℃。
5。 每次照射15~30分钟,每日1~2次,15~20次为一疗程。
治疗结束时,将照射部位的汗液擦干,患者应在室内休息10~15分钟后方可外出。
注意事项
编辑本段
(1)治疗时患者不得移动体位,以防止烫伤。
(2)照射过程中如有感觉过热、心慌、头晕等反应时,需立即告知工作人员。
(3)照射部位接近眼或光线可射及眼时,应用纱布遮盖双眼。
(4)患部有温热感觉障碍或照射新鲜的瘢痕部位、植皮部位时,应用小剂量,并密切观察局部反应,以免发生灼伤。
(5)血循障碍部位,较明显的毛细血管或血管扩张部位一般不用红外线照射。
6. 近红外光谱仪器技术
依照红外光区波长的不同可以将红外光区分为三个区域:
① 近红外区,即泛频区,指的是波数在4000 cm−1以上的区域,主要测量O—H、C—H、N—H键的倍频吸收;
② 中红外区,即基本振动区,波数范围在400~4000 cm−1,也是研究和应用最多的区域,主要测量分子振动和伴随振动;
③ 远红外区,即分子振动区,指的是波数在400 cm−1以下的区域,测量的主要是分子的转动信息。
由于水是极性很强的分子,它的红外吸收非常强烈,因此水溶液不能直接测量红外光谱,通常红外光谱的样品需要研磨制成KBr的压片。
通常红外光谱的数据需要进行傅里叶变换处理,因此红外光谱仪和傅里叶变化处理器联合使用,称为傅里叶红外光谱(FITR)。在锂离子电池电解液的研究中,使用红外光谱手段的工作较多。