1. 傅里叶变换红外光谱仪的原理
对样品进行定性和定量分析,广泛应用于医药化工、地矿、石油、煤炭、环保、海关、宝石鉴定、刑侦鉴定等领域。
它不同于色散型红外分光的原理,是基于对干涉后的红外光进行傅里叶变换的原理而开发的红外光谱仪,主要由红外光源、光阑、干涉仪(分束器、动镜、定镜)、样品室、检测器以及各种红外反射镜、激光器、控制电路板和电源组成。
2. 傅里叶变换红外光谱仪的功能和作用
傅里叶红外光谱仪使用操作:
1. 开机前先检查各个部件是否连接好,处于零点状态。
2. 打开稳压电源开关,稍等片刻,当电压稳定在220V后,打开主机电源,预热一至二小时方可进行正常实验操作。
3. 实验时固体样品可用压片法先制样,KBr与样品按100:1的质量比混合后用玛瑙研钵于红外灯下研细,然后移入压片机中压片,将片子固定在样品架上方可测试。
4. 液体样品可用液膜法测定,将1-2滴试样直接滴放在可拆池的一块盐片上,然后盖上另一块盐片,借助池架上的固紧螺丝拧紧两盐片后方可测试。
5. 打开响应的软件,先采集背景值,然后将样品架插入样品池中采集样品值,红外扫描32秒后,将谱图切入当前窗口对其进行处理。
6. 傅里叶红外光谱仪实验完毕后,关闭电源,使仪器恢复原状,并进行必要的整理和清洁工作。
3. 傅里叶变换红外光谱仪应用研究领域
色散型光谱仪主要由光源、分光系统、检测器三部分组成。
1、光源产生的光分为两路:一路通过样品,一路通过参比溶液。
2、切光器控制使参比光束和样品光束交替进入单色器。
3、检测器在样品吸收后破坏两束光的平衡下产生信号,该信号被放大后被记录。
拓展资料
傅里叶变换红外光谱仪
主要由红外光源、分束器、干涉仪、样品池、探测器、计算机数据处理系统、记录系统等组成,是干涉型红外光谱仪的典型代表,不同于色散型红外仪的工作原理,它没有单色器和狭缝,利用迈克尔逊干涉仪获得入射光的干涉图,然后通过傅里叶数学变换,把时间域函数干涉图变换为频率域函数图(普通的红外光谱图)。
1、光源:傅里叶变换红外光谱仪为测定不同范围的光谱而设置有多个光源。通常用的是钨丝灯或碘钨 灯(近红外)、硅碳棒(中红外)、高压汞灯及氧化钍灯(远红外)。
2、分束器:分束器是迈克尔逊干涉仪的关键元件。其作用是将入射光束分成反射和透射两部分,然后 再使之复合,如果可动镜使两束光造成一定的光程差,则复合光束即可造成相长或相消干涉。
对分束器的要求是:应在波数v处使入射光束透射和反射各半,此时被调制的光束振幅最大。根据使用波段范围不同,在不同介质材料上加相应的表面涂层,即构成分束器。
3、探测器:傅里叶变换红外光谱仪所用的探测器与色散型红外分光光度计所用的探测器无本质的区 别。常用的探测器有硫酸三甘钛(TGS)、铌酸钡锶、碲镉汞、锑化铟等。
4、数据处理系统:傅里叶变换红外光谱仪数据处理系统的核心是计算机,功能是控制仪器的操作,收集 数据和处理数据。
4. 傅里叶变换红外光谱仪的原理图
红外光谱仪的原理是利用物质对不同波长的红外辐射的吸收特性,进行分子结构和化学组成分析的仪器。红外光谱仪通常由光源,单色器,探测器和计算机处理信息系统组成。根据分光装置的不同,分为色散型和干涉型。
对色散型双光路光学零位平衡红外分光光度计而言,当样品吸收了一定频率的红外辐射后,分子的振动能级发生跃迁,透过的光束中相应频率的光被减弱,造成参比光路与样品光路相应辐射的强度差,从而得到所测样品的红外光谱。
5. 傅里叶变换红外光谱法的基本原理
傅立叶变换红外光谱仪被称为第三代红外光谱仪,利用麦克尔逊干涉仪将两束光程差按一定速度变化的复色红外光相互干涉,形成干涉光,再与样品作用。探测器将得到的干涉信号送入到计算机进行傅立叶变化的数学处理,把干涉图还原成光谱图。
红外光谱仪是利用物质对不同波长的红外辐射的吸收特性,进行分子结构和化学组成分析的仪器。红外光谱仪通常由光源,单色器,探测器和计算机处理信息系统组成。根据分光装置的不同,分为色散型和干涉型。对色散型双光路光学零位平衡红外分光光度计而言,当样品吸收了一定频率的红外辐射后,分子的振动能级发生跃迁,透过的光束中相应频率的光被减弱,造成参比光路与样品光路相应辐射的强度差,从而得到所测样品的红外光谱。
6. 傅里叶变换红外光谱技术
傅立叶变换红外光谱仪的原理是通过测量经过红外吸收的干涉图,并对其进行傅立叶积分变换来获得被测物质的红外波段的光谱图,从而可以对该物质的元素,组分和分子结构进行分析和确定。
和传统的色散型光谱仪相比,傅立叶变换红外光谱仪可以获得较好的信噪比和分辨率。目前学校和研究所里使用的红外谱仪基本上都是傅立叶变换红外谱仪(FTIR).
7. 傅里叶变换红外光谱仪的原理及应用
傅里叶红外光谱仪(FT-IR)是分子吸收光谱,不同的官能团,化学键振动或转动,对不同波数的红外光有吸收,据此,可以测定出样品有哪些官能团或化学键存在或变化,用以物质的定性、定量、反应过程等的研究。
8. 傅里叶变换红外光谱仪结构图
1.仪器及其校正,可使用傅里叶变换红外光谱仪或色散型红外分光光度计。用聚苯乙烯薄膜(厚度约为0.04mm)校正仪器,绘制其光谱,用3027cm-1,2851cm-1,1601cm-1,1028cm-1,907cm-1处的吸收峰对仪器的波数进行校正。傅里叶变换红外光谱仪在3000cm-1附近的波数误差应不大于±5cm-1,在1000cm-1附近的波数误差应不大于±1cm-1。
仪器的分辨率要求在3110~2850cm-1范围内应能清晰地分辨出7个峰,峰2851cm-1与谷2870cm-1之间的分辨深度不小于18%透光率,峰1583cm-1与谷1589cm-1之间的分辨深度不小于12%透光率。仪器的标称分辨率,除另有规定外,应不低于2cm-1。
2.供试品的制备方法除另有规定外,应按照药典委员会编订的《药品红外光谱集》各卷所收载各光谱图所规定的制备方法制备。具体操作技术可参见《药品红外光谱集》的说明。
3.正文中各品种项下规定“应与对照的图谱(光谱集××图)一致”,系指《药品红外光谱集》第一卷(1995年版)、第二卷(2000年版)和第三卷(2005年版)的图谱。同一化合物的图谱若在不同卷上均有收载时,则以后卷所收的图谱为准。
4.具有多晶现象的固体药品由于供测定的供试品晶型可能不同,导致绘制的光谱图与《药品红外光谱集》所收载的光谱图不一致。遇此情况,应按该药品光谱图中备注的方法或各品种正文中规定的方法进行预处理后再绘制比对。如未规定药用晶型与合适的预处理方法,则可使用对照品,并采用适当的溶剂对供试品与对照品在相同条件下同时进行重结晶后,再依法测定比对。如已规定药用晶型的,则应采用相应药用晶型的对照品依法比对。
由于各种型号的仪器性能不同,试样制备时研磨程度的差异或吸水程度不同等原因,均会影响光谱的形状。因此,进行光谱比对时,应考虑各种因素可能造成的影响。
5.用于制剂的鉴别时,品种正文中应明确规定供试品的处理方法。如处理后辅料无干扰,则可直接与原料药的标准光谱进行对比;如辅料仍存在不同程度的干扰,则可参照原料药的标准光谱在指纹区内选择3~5个辅料无干扰的待测成分的特征吸收峰,列出它们的波数位置作为鉴别的依据,实测谱带的波数误差应小于规定波数的0.5%.
6.用于晶型、异构体限度检查或含量测定时,供试品制备和具体测定方法均按各品种项下有关规定操作。