1. 霍尔传感器受干扰
三线制:三线制传感器就是电源正端和信号输出的正端分离,但它们共用一个COM端。 四线制:电源两根线,信号两根线。电源和信号是分开工作的。
三线制
有的仪表厂为了减小变送器的体积和重量、并提高抗干扰性能、减化接线,而把变送器的供电由220V AC改为低压直流供电,如电源从24V DC电源箱取用,由于低压供电就为负线共用创造了条件,这样就有了三线制的变送器产品。
四线制
由于4-20mA DC(1-5V DC)信号制的普及和应用,在控制系统应用中为了便于连接,就要求信号制的统一,为此要求一些非电动单元组合的仪表,如在线分析、机械量、电量等仪表,能采用输出为4-20mA DC信号制,但是由于其转换电路复杂、功耗大等原因,难于全部满足两线制变送器设计的三个条件,从而无法做到两线制,就只能采用外接电源的方法来做输出为4-20mA DC的四线制变送器了。
2. 霍尔传感器在应用中需要注意的问题
霍尔元件在各种应用条件下所选用的原则:
1.磁场测量。如果对被测磁场精度要求较高,如优于±0.5%,那么通常选用砷化镓霍尔元件,其灵敏度高,约为5~10mv/100mt,温度误差可忽略不计,且材料性能好,可做的体积较小。如果对被测磁场精度较低且对体积要求不高,如精度低于±0.5%时,最好选用硅和锗雹尔元件。
2.电流测量。大部分霍尔元件可以用于电流测量,要求精度较高时,选用砷化镓霍尔元件,精度不高时可选用砷化镓、硅、锗等霍尔元件。
3.信号的运算和测量。通常利用霍尔电势与控制电流、被测磁场成正比,并与被测磁场同霍尔元件表面的夹角成正弦关系的特性,制造函数发生器。利用霍尔元件输出与控制电流和被测磁场乘积成正比的特性,制造功率表、电度表等。
4.拉力和压力测量。选用霍尔件制成的传感器较其它材料制成的阵感器灵敏度和线性度更佳。
5.转速和脉冲测量。测量转速和脉冲时,通常是选用集成霍尔开关和锑化铟霍尔元件。如在录像机和摄像机中采用了锑铟霍尔元件替代电机的电刷,可以大大提高了使用寿命。
你可以到杭州凯悦电子有限公司网站去看,里面比较详细!!!
3. 霍尔传感器产生误差的原因
霍尔效应用公式表示为:E=KBIcosθ。E为霍尔效应电压,单位为伏特(V);I是霍尔器件的工作电流,单位为安培(A);B是外部磁场的磁感应强度,单位为特斯拉(T)θ为I与B的垂直角度的偏差,单位可以是角度(°)或弧度(rad)。K为霍尔器件的灵敏度,是常数;其单位为:V/(A.T)。一般开关型的霍尔灵敏度是指原件本身的磁开启和关闭点,表示的单位大多为两种,高斯(Gauss)与毫特斯拉(mT),10Gauss=1mT线性霍尔的灵敏度是指单位磁场变化时其输出电压的变化,一般用毫伏/高斯(mV/Gauss)或者毫伏/毫特斯拉(mV/mT)表示,换算参照开关型
4. 影响霍尔传感器的因素
霍尔效应在1879年被E.H. 霍尔发现,它定义了磁场和感应电压之间的关系,这种效应和传统的感应效果完全不同。
当电流通过一个位于磁场中的导体的时候,磁场会对导体中的电子产生一个垂直于电子运动方向上的的作用力,从而在导体的两端产生电压差。
霍尔电流传感器是利用霍尔效应将一次大电流变换为二次微小电压信号的传感器。
实际设计的霍尔传感器往往通过运算放大器等电路,将微弱的电压信号放大为标准电压或电流信号。
上述原理制作而成的霍尔电流传感器,被称为【开环式霍尔电流传感器】。
后人为了提高传感器性能,又稍作了改造,就是利用一个补偿绕组产生磁场,通过闭环控制,使其与被测电流产生的磁场大小相等,方向相反,达到互相抵消的效果,此时,补偿绕组中的电流正比与被测电流的大小,这种传感器,被称为【闭环式或磁平衡式霍尔电流传感器】。
5. 霍尔传感器 干扰
答:传感器抗干扰能力是无刷直流风扇原理,所设计的基于霍尔元件的脉冲发生器,构造简单,性能好。在机车电气系统中存在着较为恶劣的电磁环境,因此要求产品具有较强的抗干扰能力。
无刷直流风扇采用无电刷马达驱动,无电磁干扰,完全克服有刷换相马达电磁干扰,噪音大,机械寿命短的缺点广泛应用于电子电工需强制散热的应用场合。
6. 霍尔传感器受干扰怎么解决
检测方式: 磁电式的和霍尔式的都要先检查传感器到靶轮之间的间隙。
磁电式的可以用电阻表检测它的电阻,阻值一般在几百到一千多欧之间,视车型而定。也可以起动发动机测量它的电压,电压应该随着发动机转速的升高而升高。
霍尔式的可以先测其是否有供电电压(注意:测量时要打开电门),然后测量传感器的接地。 最后测量信号,信号电压应该是接近参考电压和0V。 霍尔式曲轴位置传感器有三根线,一根是供电线(提供参考电压),一根是接地线,还有一根就是信号线;传感器工作时,信号线会输出方波信号,方波的幅值接近参考电压,方波的底部接近0V,发动机的转速越高方波的频率就会越大。 曲轴位置传感器: 曲轴位置传感器的作用就是确定曲轴的位置,也就是曲轴的转角。它通常要配合凸轮轴位置传感器一起来工作--确定基本点火时刻。我们都知道,发动机是在压缩冲程末开始点火的,那么发动机电脑是怎么知道哪缸该点火了呢?就是通过曲轴位置传感器和凸轮轴位置传感器的信号来计算的,通过曲轴位置传感器,可以知道哪缸活塞处于上止点,通过凸轮轴位置传感器,可以知道哪缸活塞是在压缩冲程中。这样,发动机电脑知道了该什么时候给哪缸点火了。
7. 霍尔传感器受干扰的原因
霍尔传感器是根据霍尔效应制作的一种磁场传感器。霍尔效应是磁电效应的一种,这一现象是霍尔(A.H.Hall,1855—1938)于1879年在研究金属的导电机构时发现的。后来发现半导体、导电流体等也有这种效应,而半导体的霍尔效应比金属强得多,利用这现象制成的各种霍尔元件,广泛地应用于工业自动化技术、检测技术及信息处理等方面。霍尔效应是研究半导体材料性能的基本方法。通过霍尔效应实验测定的霍尔系数,能够判断半导体材料的导电类型、载流子浓度及载流子迁移率等重要参数。
霍尔传感器的特点:(与普通互感器比较)
1、 霍尔传感器可以测量任意波形的电流和电压,如:直流、交流、脉冲波形等,甚至对瞬态峰值的测量。副边电流忠实地反应原边电流的波形。而普通互感器则是无法与其比拟的,它一般只适用于测量50Hz正弦波。
2、 原边电路与副边电路之间完全电绝缘,绝缘电压一般为2KV至12KV,特殊要求可达20KV至50KV。
3、 精度高:在工作温度区内精度优于1%,该精度适合于任何波形的测量。而普通互感器一般精度为3%至5%且适合50Hz正弦波形。
4、 线性度好:优于0.1%。
5、 动态性能好:响应时间小于1μs,跟踪速度di/dt高于50A/μs。
6、 霍尔传感器模块这种优异的动态性能为提高现代控制系统的性能提供了关键的基础。与此相比普通的互感器响应时间为10-12ms,它已不能适应工作控制系统发展的需要。
7、 工作频带宽:在0-100kHz频率范围内精度为1%。在0-5kHz频率范围内精度为0.5%。
8、 测量范围:霍尔传感器模块为系统产品,电流测量可达50KA,电压测量可达6400V。
9、 过载能力强:当原边电流超负荷,模块达到饱和,可自动保护,即使过载电流是额定值的20倍时,模块也不会损坏。 10、 模块尺寸小,重量轻,易于安装,它在系统中不会带来任何损失。 11、 模块的初级与次级之间的“电容”是很弱的,在很多应用中,共模电压的各种影响通常可以忽略,当达到几千伏/μs的高压变化时,模块有自身屏蔽作用。
12、 模块的高灵敏度,使之能够区分在“高分量”上的弱信号,例如:在几百安的直流分量上区分出几毫安的交流分量。
13、 可靠性高:失效率 λ = 0.43 x 10-6 /小时。
14、 抗外磁场干扰能力强:在距模块5-10cm处有一个两倍于工作电流(2Ip)的电流所产生的磁场干扰而引起的误差小于0.5%,这对大多数应用,抗外磁场干扰是足够的,但对很强磁场的干扰要采取适当的措施。
8. 霍尔传感器电磁干扰
1、当发动机出现无法期待、不喷油、不点火、自动熄火等情况时,应当重点检查曲轴位置传感器。
2、更换曲轴位置传感器后,应当使用TECH-2A诊断仪执行曲轴位置系统偏差读写程序。
3、曲轴位置传感器损坏后,有些汽车发动机不能启动,有些可以启动。这主要是由于发动机ECU的控制策略不同。
4、对于霍尔式曲轴位置传感器,不能采取测量电阻的方法判断其性能好坏。
5、当使用起动机无法启动发动机,但是用人或者用其他汽车牵引可以起动时,发动机和蓄电池都正常,这是由于设计时,曲轴位置传感器与启动机的距离太近,启动机一旦出现电磁干扰,会影响曲轴位置传感器的正常工作。