1. 霍尔效应定义及霍尔传感器的工作原理
发现
霍尔效应在1879年被物理学家霍尔发现,它定义了磁场和感应电压之间的关系,这种效应和传统的电磁感应完全不同。当电流通过一个位于磁场中的导体的时候,磁场会对导体中的电子产生一个垂直于电子运动方向上的作用力,从而在垂直于导体与磁感线的两个方向上产生电势差。
虽然这个效应多年前就已经被人们知道并理解,但基于霍尔效应的传感器在材料工艺获得重大进展前并不实用,直到出现了高强度的恒定磁体和工作于小电压输出的信号调节电路。根据设计和配置的不同,霍尔效应传感器可以作为开/关传感器或者线性传感器,广泛应用于电力系统中。
解释
在半导体上外加与电流方向垂直的磁场,会使得半导体中的电子与空穴受到不同方向的洛伦兹力而在不同方向上聚集,在聚集起来的电子与空穴之间会产生电场,电场力与洛伦兹力产生平衡之后,不再聚集,此时电场将会使后来的电子和空穴受到电场力的作用而平衡掉磁场对其产生的洛伦兹力,使得后来的电子和空穴能顺利通过不会偏移,这个现象称为霍尔效应。而产生的内建电压称为霍尔电压。
方便起见,假设导体为一个长方体,长度分别为a、b、d,磁场垂直ab平面。电流经过ad,电流I = nqv(ad),n为电荷密度。设霍尔电压为VH,导体沿霍尔电压方向的电场为VH / a。设磁感应强度为B。
洛伦兹力
F=qE+qvB/c(Gauss单位制)
电荷在横向受力为零时不再发生横向偏转,结果电流在磁场作用下在器件的两个侧面出现了稳定的异号电荷堆积从而形成横向霍尔电场
由实验可测出 E= UH/W 定义霍尔电阻为
RH= UH/I =EW/jW= E/j
j = q n vRH=-vB/c /(qn v)=- B/(qnc)
UH=RH I= -B I /(q n c)
本质
固体材料中的载流子在外加磁场中运动时,因为受到洛仑兹力的作用而使轨迹发生偏移,并在材料两侧产生电荷积累,形成垂直于电流方向的电场,最终使载流子受到的洛仑兹力与电场斥力相平衡,从而在两侧建立起一个稳定的电势差即霍尔电压。[2]正交电场和电流强度与磁场强度的乘积之比就是霍尔系数。平行电场和电流强度之比就是电阻率。大量的研究揭示:参加材料导电过程的不仅有带负电的电子,还有带正电的空穴。
应用
霍尔效应在应用技术中特别重要。霍尔发现,如果对位于磁场(B)中的导体(d)施加一个电流(Iv),该磁场的方向垂直于所施加电压的方向,那么则在既与磁场垂直又和所施加电流方向垂直的方向上会产生另一个电压(UH),人们将这个电压叫做霍尔电压,产生这种现象被称为霍尔效应。[3]好比一条路, 本来大家是均匀的分布在路面上, 往前移动。当有磁场时, 大家可能会被推到靠路的右边行走。故路 (导体) 的两侧,就会产生电压差。这个就叫“霍尔效应”。根据霍尔效应做成的霍尔器件,就是以磁场为工作媒体,将物体的运动参量转变为数字电压的形式输出,使之具备传感和开关的功能。
迄今为止,已在现代汽车上广泛应用的霍尔器件有:在分电器上作信号传感器、ABS系统中的速度传感器、汽车速度表和里程表、液体物理量检测器、各种用电负载的电流检测及工作状态诊断、发动机转速及曲轴角度传感器、各种开关,等等。
例如汽车点火系统,设计者将霍尔传感器放在分电器内取代机械断电器,用作点火脉冲发生器。这种霍尔式点火脉冲发生器随着转速变化的磁场在带电的半导体层内产生脉冲电压,控制电控单元(ECU)的初级电流。相对于机械断电器而言,霍尔式点火脉冲发生器无磨损免维护,能够适应恶劣的工作环境,还能精确地控制点火正时,能够较大幅度提高发动机的性能,具有明显的优势。
用作汽车开关电路上的功率霍尔电路,具有抑制电磁干扰的作用。许多人都知道,轿车的自动化程度越高,微电子电路越多,就越怕电磁干扰。而在汽车上有许多灯具和电器件,尤其是功率较大的前照灯、空调电机和雨刮器电机在开关时会产生浪涌电流,使机械式开关触点产生电弧,产生较大的电磁干扰信号。采用功率霍尔开关电路可以减小这些现象。
霍尔器件通过检测磁场变化,转变为电信号输出,可用于监视和测量汽车各部件运行参数的变化。例如位置、位移、角度、角速度、转速等等,并可将这些变量进行二次变换;可测量压力、质量、液位、流速、流量等。霍尔器件输出量直接与电控单元接口,可实现自动检测。如今的霍尔器件都可承受一定的振动,可在零下40摄氏度到零上150摄氏度范围内工作,全部密封不受水油污染,完全能够适应汽车的恶劣工作环境。
发展
在霍尔效应发现约100年后,德国物理学家克利青(Klaus von Klitzing, 1943-)等在研究极低温度和强磁场中的半导体时发现了量子霍尔效应,这是当代凝聚态物理学令人惊异的进展之一,克利青为此获得了1985年的诺贝尔物理学奖。 之后,美籍华裔物理学家崔琦(Daniel Chee Tsui,1939- )和美国物理学家劳克林(Robert B.Laughlin,1950-)、施特默(Horst L. St rmer,1949-)在更强磁场下研究量子霍尔效应时发现了分数量子霍尔效应,这个发现使人们对量子现象的认识更进一步,他们为此获得了1998年的诺贝尔物理学奖。
如今,复旦校友、斯坦福教授张首晟与母校合作开展了“量子自旋霍尔效应”的研究。“量子自旋霍尔效应”最先由张首晟教授预言,之后被实验证实。这一成果是美国《科学》杂志评出的2007年十大科学进展之一。如果这一效应在室温下工作,它可能导致新的低功率的“自旋电子学”计算设备的产生。 工业上应用的高精度的电压和电流型传感器有很多就是根据霍尔效应制成的,误差精度能达到0.1%以下
由清华大学薛其坤院士领衔,清华大学、中科院物理所和斯坦福大学研究人员联合组成的团队在量子反常霍尔效应研究中取得重大突破,他们从实验中首次观测到量子反常霍尔效应,这是中国科学家从实验中独立观测到的一个重要物理现象,也是物理学领域基础研究的一项重要科学发现。
相关效应
量子霍尔效应:1.1整数量子霍尔效应:量子化电导e2/h被观测到,为弹道输运(ballistic transport)这一重要概念提供了实验支持。1.2分数量子霍尔效应:劳赫林与J·K·珍解释了它的起源。两人的工作揭示了涡旋(vortex)和准粒子(quasi-particle)在凝聚态物理学中的重要性。
热霍尔效应:垂直磁场的导体会有温度差。
Corbino效应:垂直磁场的薄圆碟会产生一个圆周方向的电流。
2. 简述霍尔效应传感器工作原理
霍尔传感器分为线性型、开关型和锁键型等多种,其主要元件均是利用霍尔效应原理制成的。所谓霍尔效应,指的是这样一种物理现象:如果把通有电流I的导体放在垂直于它的磁场中,则在导体的两侧P1、P2会产生一电势差UH,它与电流I及磁感应强度B成正比,与导体厚度d成反比,即:UH=K(IB/d),式中K为霍尔系数。霍尔系数越大,表明霍尔效应越显著。人们常利用某些半导体材料(如锗、锑化铟)显著的霍尔效应来制成直流和低频磁场/电压变换器
3. 霍尔效应定义及霍尔传感器的工作原理是什么
您好!我是做霍尔的厂家,OH系列霍尔。霍尔传感器的本质就是利用霍尔效应做成的传感器。利用霍尔元件或器件可以测量磁通量(检测磁场)。利用磁通量的大小可以知道其它物理量,如:电流,电压,距离,温度等等
希望帮到您!
4. 简述霍尔效应及霍尔传感器的应用场合
在现代汽车上广泛应用的霍尔器件有:在分电器上作信号传感器、ABS系统中的速度传感器、汽车速度表和里程表、液体物理量检测器等。
2/3
用作汽车开关电路上的功率霍尔电路,具有抑制电磁干扰的作用。轿车的自动化程度越高,微电子电路越多,就越怕电磁干扰。
3/3
而在汽车上有许多灯具和电器件,尤其是功率较大的前照灯、空调电机和雨刮器电机在开关时会产生浪涌电流,使机械式开关触点产生电弧,产生较大的电磁干扰信号。采用功率霍尔开关电路可以减小这些现象。
5. 霍尔传感器是利用什么效应原理
电磁传感器是利用电磁感应原理,将输入运动速度变换成感应电势输出的传感器,不需要辅助电源,就能把被测对象的机械能转换成易于测量的电信号;
霍尔传感器是利用霍尔效应原理,洛仑兹力的作用下,偏置电流I的电子流在通过霍尔半导体时向一侧偏移,使该片在CD方向上产生电位差,产生霍尔电压,需要辅助电源才能正常工作。