生物反应器的发展趋势(生物反应器的发展趋势可归纳为)

海潮机械 2023-01-19 16:10 编辑:admin 280阅读

1. 生物反应器的发展趋势可归纳为

生物反应器的研究开发重点是动物乳房生物反应器和动物血液反应器,目前乳房生物反应器是迄今为止最理想的生物反应器,乳房生物反应器的原理是,应用重组DNA技术和转基因技术,将目的基因转移到尚未分化的动物胚胎细胞(或受精卵)中,经胚胎移植,得到能在乳腺中表达转基因产品的个体,其乳腺组织可分泌生产“目的产品”如具有药用价值的蛋白,这些蛋白进入奶中,再通过回收含转基因蛋白的动物奶,就可以提取有重要药用价值的生物活性蛋白.例如:把含有人凝血因子的基羊注入到羊的受精卵中,培育成的转基因羊在凝血因子基因控制下其乳汁中会产生能够治疗血友病的珍贵药物,母羊被称乳房生物反应器.故答案为:乳房生物反应器;遗传基因;乳房.

2. 生物反应器的发展趋势可归纳为大型化

生物反应器,是指利用酶或生物体(如微生物、动植物细胞)所具有的特殊功能,在体外进行生物化学反应的装置系统。

生物反应器与化学反应器不同,化学反应器从原料进入到产物生成,常常需要加压和加热,是一个高能耗过程。而生物么应器则不同,在酶和微生物的参与下,在常温和常压下就可以进行化学合成。因此,生物反应器问世之后,应受到化工部门的重视。化学工程专家认为,应该尽可能多地让化学合成过程由生物去完成。设计理想的生物反应器,就成了现代生物技术产业的一个重要任务。

设计生物反应器时要考虑两点:一是选择特异性高的酶或适宜的活细胞作为催化剂,尽可能减少副产物,提高产品产量;二是尽可能提高产物的浓度,降低成本。

生物反应器首先在发酵工业中得到应用。发酵工业中使用的生物反应器,实际上是发酵罐。另一种是以固定化酶或固定化细胞为催化剂的酶反应器。世界上最大的发酵罐高达100米,直径7米,容积为4000立方米。它远远望去,犹如一座壮观的圆形塔。

目前人们认为最理想的生物反应器是 乳房生物反应器

通过对奶牛进行基因改造,使之在乳汁中产生大量的目的蛋白,无论纯化还是使用都很方便

3. 生物反应器的特点

与其他培养相比,动物细胞培养存在一些特殊的地方:

1、培养环境纯净度要求高,动物细胞培养使用超纯水,培养基添加物需要细胞培养级,细胞往往对培养环境比较敏感,过多的杂质会对细胞的代谢产生影响,动物细胞培养往往需要添加血清等营养物质,目前也有很多无血清培养基可以支持细胞的生长和增殖;

2、动物细胞一般是贴壁依赖型生长的,通过驯化可以实现悬浮培养,原代培养的细胞往往是一个不同种类细胞的混合物,通过纯培养得到单一的细胞群,细胞大部分是有限传代的,少量细胞株可以实现转化,无限传代,甚至癌化,所以要避免与人体的接触;

3、动物细胞的扩大培养,因为动物细胞没有细胞壁,对剪切力和渗透压比较敏感,动物细胞的生物反应器,要注意搅拌温和,pH调节时注意体系的渗透压变化。

4. 简述生物反应器的发展趋势

动物反应器:比如小鼠乳腺细胞表达系统等,具有真核动物细胞的蛋白加工系统,适合表达微生物反应器和植物反应器不能很好表达的动物内源性基因。

植物反应器:拟南芥,烟草等,适合表达一些真核基因和某些原核基因。其应用主要是摸索该基因在模式化植物中的作用,对农业作物基因改良有积极意义。

动植物反应器:优点在于能表达较为复杂的蛋白,缺点就是操作复杂,周期长,转化效率低。

微生物反应器:大肠杆菌,毕赤酵母等,适合表达原核蛋白和一些真核蛋白。优点就是生长快,周期短,操作简单,转化效率高。缺点就是对于一些真核蛋白缺乏必要的蛋白修饰加工系统,有可能造成该蛋白不表达或者表达无活性(比如包涵体形式存在)

5. 生物反应器的发展趋势可归纳为什么

答:生命科学基础性研究的优先发展领域:基因组和功能基因组学、重大疾病相关基因的识别、分子生物学与生物化学、细胞和发育生物学、神经生物学、动植物区系的系统演化与协同进化、生物信息学等。

  基因组研究:在基因组这一前沿领域,中国开始走向世界。中国科学家承担了人类基因组1%的测序,是继美、英、法、日、德后成为正式参加国际人类基因组合作项目的第六个国家,也是惟一加入该计划的发展中国家;克隆了功能新基因的全长cDNA800多条,已申请一批国内外专利;证明了东亚人群的基因组与其他现代人群一样起源于非洲;建成了南、北方人类基因组研究中心。最近,中国科学院在水稻基因组研究中取得重大进展,已经发表了水稻基因组的框架序列,并在参加水稻基因组完成序列图测定的国际合作中率先完成了第四号染色体的工作。中国在微生物基因组测序方面也已成为主要的参加国,迄今已完成了钩端螺旋体等6个微生物的全基因组测序。

  疾病相关基因研究:中国科学家充分发挥人类遗传资源优势,近年来取得了疾病致病基因定位、克隆的一系列进展。首先在急性早幼粒白血病的致病基因克隆和功能研究方面取得突破,继而克隆了耳聋、短指(趾)等一批单基因疾病的致病基因,近来又定位了II型糖尿病、原发性高血压和鼻咽癌的基因。应用基因表达谱和生物芯片,最近发现了一批与原发性肝癌发病、发展相关的基因和基因标志。

  其他前沿领域:在诸如生物化学和分子生物学、神经生物学、进化生物学等方面,近年来中国生命科学界也取得了不少国际一流成果。例如,发现了与精子成熟和保护有关的抗菌胜基因、揭示了果蝇有与高等动物类似的认知行为,首次观察到植物防止自交的一种新的繁育机制等。在系统发育和动植物区系演化方面,完成了255卷的《植物志》、《动物志》、《中国隐花植物志》,这些工作均得到国际同行的高度评价。

生物技术研究与开发重点领域:高产优质农作物的遗传育种、转基因技术和动物克隆、生物反应器、基因和蛋白质工程疫苗及药物、基因治疗等。

  农业生物技术:中国在超级杂交稻研究与组合应用上处于世界领先地位,已选育出一批两系法亚种间杂交稻新组合,较好地实现了杂种优势与理想株型的结合。育成的超级杂交稻组合比现在生产上应用的杂交稻组合增产15%-25%。2000-2001年超级杂交稻累计推广300万亩,共增产优质稻谷3-4亿公斤。优质小麦品种业已得到推广。在植物基因工程研究开发方面,中国已经有转基因耐贮藏番茄,转查尔酮合成□基因矮牵牛、抗病毒甜椒、抗病毒番茄、抗虫棉花等5种自主研制的转基因植物通过了国家商品化生产许可,并有20余种转基因植物进入环境释放阶段。2000年中国转基因作物(主要是转基因棉花)种植面积达到50万公顷,列世界第四位。同时,中国转基因植物的研究体系和安全评价体系也基本建立起来,其中包括以基因研究为主的上游部分、以植物遗传转化为主的中游部分和以生物技术育种为主的下游部分的研究体系。

  农业微生物基因工程研究,包括杀虫、抗病、共生和联合固氮等微生物的遗传改造和应用取得良好进展。目前中国是世界上农业重组微生物环境释放面积最大、种类最多和研究范围最广的国家,所取得的成就已受到各国科学家的广泛关注。在中国境内申报并通过农业生物基因工程安全委员会批准的农业重组微生物在40例以上。

  在动物生物技术研究与开发方面也取得了可喜的成绩:转基因鱼研究达到了国际领先水平;获得了生产人药用蛋白的转基因动物;获得了山羊、牛等一大批克隆动物,其生产水平已达到国际先进。此外,部分畜禽基因工程疫苗已经达到了商业化生产的阶段。

  医药生物技术:经多年努力,基因工程药物产业初具规模,批准上市的产品有18种,进入一、二期临床的有21种,处于临床前开发的有35种。产品市场占有率不断提高,例如α1b干扰素国内市场占有率已达60%。治疗性乙型肝炎疫苗初露端倪:血源性乙肝抗原-抗体复合物已获特殊临床试验批文;基因工程乙肝抗原-抗体复合物即将进入临床试验,成果已获中国和国际专利,目前正在开展三重复合物新型疫苗研制。人工血液代用品技术转让成功,已建成中试规模基地,连续多批产品达到质控标准。通过产学研的结合,中国基因工程制药业具备一定生产能力的企业已有60多家。

  生物技术药物由仿制逐步向创新转变,在世界前十种销量最大的品种中,中国能生产八种。此外,应用于诊断或导向药物的单抗和单抗衍生物的研究进展顺利,为今后抗体产品的产业化奠定了基础;遗传病的基因诊断技术达到国际先进水平;肿瘤免疫治疗、抗血管治疗、组织工程、生物芯片和干细胞研究等取得了一系列突破与重要进展;基因治疗的关键技术实现突破,B型血友病、恶性肿瘤、梗塞性外周血管病等五种治疗方案进入临床试验。中国的生物技术产品销售额已从1986年的2.6亿元人民币上升到2000年的200亿元人民币。

6. 生物反应器的发展趋势可归纳为哪些方面

生物反应器、仿生都是模拟生物的功能或者结构。生物反应器主要是模拟其化学功能,仿生则多模拟生物结构和功能原理。

生物反应器:生物反应器是利用生物体所具有的生物功能,在体外或体内通过生化反应或生物自身的代谢获得目标产物的装置系统、细胞、组织器官等等。

生物反应器是利用酶或生物体(如微生物)所具有的生物功能,在体外进行生化反应的装置系统,它是一种生物功能模拟机,如发酵罐、固定化酶或固定化细胞反应器等。在酒类、医药生产、有机污染物降解方面有重要应用。

生物反应器是利用酶或生物体(如微生物)所具有的生物功能,在体外进行生化反应的装置系统,是一种生物功能模拟机,如发酵罐、固定化酶或固定化细胞反应器等。

生物具有的功能迄今比任何人工制造的机械都优越得多,仿生学就是要在工程上实现并有效地应用生物功能的一门学科。例如关于信息接受、信息传递、自动控制系统等,这种生物体的结构与功能在机械设计方面给了很大启发。可举出的仿生学例子,如将海豚的体形或皮肤结构应用到潜艇设计原理上。仿生学也被认为是与控制论有密切关系的一门学科,而控制论主要是将生命现象和机械原理加以比较,进行研究和解释的一门学科。

仿生学是研究生物系统的结构和性质以为工程技术提供新的设计思想及工作原理的科学。属于生物科学与技术科学之间的边缘学科。它涉及生物学、生物物理学、生物化学、物理学、控制论、工程学等学科领域。仿生技术通过对各种生物系统所具有的功能原理和作用机理作为生物模型进行研究,最后实现新的技术设计并制造出更好的新型仪器、机械等。