磁光克尔效应显微镜(场发射电子显微镜)

海潮机械 2023-01-05 13:51 编辑:admin 259阅读

1. 场发射电子显微镜

一、透射电子显微镜的成像原理可分为三种情况:

1、吸收像:当电子射到质量、密度大的样品时,主要的成相作用是散射作用。样品上质量厚度大的地方对电子的散射角大,通过的电子较少,像的亮度较暗。早期的透射电子显微镜都是基于这种原理。

2、衍射像:电子束被样品衍射后,样品不同位置的衍射波振幅分布对应于样品中晶体各部分不同的衍射能力,当出现晶体缺陷时,缺陷部分的衍射能力与完整区域不同,从而使衍射波的振幅分布不均匀,反映出晶体缺陷的分布。

3、相位像:当样品薄至100Å以下时,电子可以穿过样品,波的振幅变化可以忽略,成像来自于相位的变化。

二、扫描电子显微镜成像原理

扫描电子显微镜通过用聚焦电子束扫描样品的表面来产生样品表面的图像。

电子与样品中的原子相互作用,产生包含关于样品的表面测绘学形貌和组成的信息的各种信号。电子束通常以光栅扫描图案扫描,并且光束的位置与检测到的信号组合以产生图像。

扫描电子显微镜可以实现分辨率优于1纳米。样品可以在高真空,低真空,湿条件(用环境扫描电子显微镜)以及宽范围的低温或高温下观察到。

最常见的扫描电子显微镜模式是检测由电子束激发的原子发射的二次电子。可以检测的二次电子的数量,取决于样品测绘学形貌,以及取决于其他因素。

通过扫描样品并使用特殊检测器收集被发射的二次电子,创建了显示表面的形貌的图像。它还可能产生样品表面的高分辨率图像,且图像呈三维,鉴定样品的表面结构。

扩展资料:

在使用透视电子显微镜观察生物样品前样品必须被预先处理。随不同研究要求的需要科学家使用不同的处理方法。

1、固定:为了尽量保存样本的原样使用戊二醛来硬化样本和使用锇酸来染色脂肪。

2、冷固定:将样本放在液态的乙烷中速冻,这样水不会结晶,而形成非晶体的冰。这样保存的样品损坏比较小,但图像的对比度非常低。

3、脱干:使用乙醇和丙酮来取代水。

4、垫入:样本被垫入后可以分割。

5、分割:将样本使用金刚石刃切成薄片。

6、染色:重的原子如铅或铀比轻的原子散射电子的能力高,因此可被用来提高对比度。

2. 场发射电子显微镜能拍磁性物质吗

透射电子显微镜的应用领域:

  1、材料领域

  材料的微观结构对材料的力学、光学、电学等物理化学性质起着决定性作用。透射电子显微镜作为材料表征的重要手段,不仅可以用衍射模式来研究晶体的结构,还可以在成像模式下得到实空间的高分辨像,即对材料中的原子进行直接成像,直接观察材料的微观结构。

  2、物理学领域

  在物理学领域中,电子全息术能够同时提供电子波的振幅和相位信息,从而使透射电子显微镜在磁场和电场分布等与相位密切相关的研究上得到广泛应用。目前,透射电子显微镜结合电子全息已经应用在测量半导体多层薄膜结构器件的电场分布、磁性材料内部的磁畴分布等方面。

  3、化学领域

  在化学领域,原位透射电子显微镜因其超高的空间分辨率为原位观察气相、液相化学反应提供了一种重要的方法。利用原位透射电子显微镜进一步理解化学反应的机理和纳米材料的转变过程,以期望从化学反应的本质理解、调控和设计材料的合成。目前,原位电子显微技术已在材料合成、化学催化、能源应用和生命科学领域发挥着重要作用。透射电子显微镜可以在极高的放大倍数下直接观察纳米颗粒的形貌和结构,是纳米材料Z常用的表征手段之一。

  4、生物学领域

  在生物学领域,X射线晶体学技术和核磁共振常被用来研究生物大分子的结构,已经能够将蛋白质的位置精度确定到0.2nm,但是其各有局限。X射线晶体学技术基于蛋白质晶体,研究的常常是分子的基态结构,而对解析分子的激发态和过渡态无能为力。生物大分子在体内常常发生相互作用并形成复合物而发挥作用,这些复合物的结晶化非常困难。核磁共振虽然能够获得分子在溶液中的结构并且能够研究分子的动态变化,但主要适合用来研究分子量较小的生物大分子。

3. 场发射电子显微镜能看磁性材料吗?

电子显微镜可以看到夸克,电子显微镜简称电镜,经过50多年的发展,已成为现代科学技术中不可缺少的重要工具,电子显微镜由净桐真空装置和电源柜三部分组成,,电子显微镜用来聚焦电子,是电子显示镜境通中最重要的一部分,一般使用的是磁透镜,有时也有使用静电透镜的,他用一个对称与晋同轴线的空间,电场和磁场是电子轨迹向轴线片区形成聚焦,其中,用于光学显微镜中的光学透镜使光束聚焦的作用是一样的,所以称此电子显微镜

4. 场发射电子显微镜和双束

现在高性能的透射电子显微镜一般都采用双聚光镜系统。第一聚光镜是强激磁、短焦距的透镜,可将电子枪光斑缩小10~50倍;而第二聚光镜是弱激磁、长焦距透镜,适焦时放大倍数为2倍左右。如果电子枪第一交叉点的光斑直径为50μm,在样品平面上可获得2~10μm的照明电子束斑。

双聚光镜系统还使得在第二聚光镜与物镜之间有足够的空间来安放样品台和其它附件。

5. 场发射电子显微镜与普通电镜区别

传统扫描电子显微镜(SEM)配有接收二次电子的探头(ET),它的工作原理:ET探头通过接收样品的二次电子,经光电倍增管放大后,信号再输到前置放大器放大。最后去调制显象管或其它成象系统;但它只能在高真空下工作,因此只光电倍增管能观察不含水分的固体导电样品相通过脱水、喷金属化等处理后的生物样品。对于含有适量水分的新鲜生物等样品,传统扫描电镜就无法满足要求。 普通扫描电镜的样品室和镜筒内均为高真空(约为10^-6个大气压),只能检验导电导热或经导电处理的干燥固体样品。低真空扫描电镜可直接检验非导电导热样品,无需进行处理,但是低真空状态下只能获得背散射电子像。

环境扫描电镜有二个探头(ET和GSED),分别在高真空和低真空下工作。因此,它除了保持传统扫描电镜功能外。由于增加了GSED探头,就增加了新的功能。GSED可以工作在低真空(约达20Torr)下,它安装在物镜极靴底部,探头上施以数百伏的正电压以吸引由样品激发出的二次电子,二次电子在探头电场中被加速并碰撞气体分子使其电离,部分气体电离成正离子和电子(这些电子被称为气体二次电子),这种加速一电离过程的不断重复,使初始二次电子信号呈连续比例级数放大,GSED探头接收这些信号并将其直接传到电子放大器放大成电信号去调制显象管或其它成像系统。

环境扫描电镜除具有以上电镜的所有功能外,还具有以下几个主要特点: 1.样品室内的气压可大于水在常温下的饱和蒸汽压 2.环境状态下可对二次电子成像 3.观察样品的溶解、凝固、结晶等相变动态过程(在-20℃~+20℃范围)。

环境扫描电镜可以对各种固体和液体样品进行形态观察和元素(C-U)定性定量分析,对部分溶液进行相变过程观察。对于生物样品、含水样品、含油样品,既不需要脱水,也不必进行导电处理,可在自然的状态下直接观察二次电子图像并分析元素成分,

6. 场发射电子显微镜视频

还可以啊!具体要看是哪款功能,显微镜有很多种 常见的显微镜,如:LJ-TS01 体视显微镜,LJ-SZM 实体显微镜,三目显微镜LJ-ST03,LJ-CL01 拍照测量显微镜 ,LJ-CLP03金相显微镜 ,LJ-HD01 高清显微镜, LJ-HS01 HDMI显微镜,LJ-DSX01电视显微镜,LJ-SPX01视频显微镜, LJ-DZF电子放大显微镜,LJ-DZX01 数码显微镜等。

总的分为体视显微镜和视频显微镜,体视显微镜现在都被视频显微镜代替,相比较之下,视频显微镜的放大倍数比体视显微镜要大,所以如果要测量的话,误差就小了。