1. 基于单片机的信号发生器设计
低频信号发生器中的主振荡器通常采用文氏桥式振荡器,文氏桥式振荡器是典型的RC正弦振荡器。
低频信号发生器采用单片机波形合成发生器产生高精度,低失真的正弦波电压,可用于校验频率继电器,同步继电器等,也可作为低频变频电源使用。
2. 基于单片机的信号发生器设计与实现
信号发生器是一种能提供各种频率、波形和输出电平电信号的设备。在测量各种电信系统或电信设备的振幅特性、频率特性、传输特性及其它电参数时,以及测量元器件的特性与参数时,用作测试的信号源或激励源。工作原理:信号发生器用来产生频率为20Hz~200kHz的正弦信号(低频)。除具有电压输出外,有的还有功率输出。所以用途十分广泛,可用于测试或检修各种电子仪器设备中的低频放大器的频率特性、增益、通频带,也可用作高频信号发生器的外调制信号源。另外,在校准电子电压表时,它可提供交流信号电压。低频信号发生器的原理:系统包括主振级、主振输出调节电位器、电压放大器、输出衰减器、功率放大器、阻抗变换器(输出变压器)和指示电压表。
主振级产生低频正弦振荡信号,经电压放大器放大,达到电压输出幅度的要求,经输出衰减器可直接输出电压,用主振输出调节电位器调节输出电压的大小
3. 基于单片机的信号发生器设计论文
频率不高的最简单就是用个电位器分压就可以调制,你要用单片机控制幅度的话就用数字电位器,方波的话更简单,用PWM控制一个电压,那个电压接电阻对三极管供电,信号驱动那个三极管导通就可以了
4. 基于单片机的信号发生器设计参考文献
用c需要编程调用正弦函数,驱动单片机信号发生器
5. 基于单片机的信号发生器设计硬件总体原理框图
PWM信号产生方法
脉冲宽度调制(PWM)信号广泛使用在电力变流技术中,以其作为控制信号可完成DC-DC变换(开关电源)、DC-AC变换(逆变电源)、AC-AC变换(斩控调压)和AC-DC变换(功率因数校正)。
产生PWM信号的方法有多种,现分别论述如下:
1)普通电子元件构成PWM发生器电路
基本原理是由三角波或锯齿波发生器产生高频调制波,经比较器产生PWM信号。三角波或锯齿波与可调直流电压比较,产生可调占空比PWM信号;与正弦基波比较,产生占空比按正弦规律变化的SPWM信号。此方法优点是成本低、各环节波形和电压值可观测、易于扩展应用电路等。 缺点是电路集成度低,不利于产品化。
2)单片机自动生成PWM信号
基本原理是由单片机内部集成PWM发生器模块在程序控制下产生PWM信号。优点是电路简单、便于程序控制。缺点是不利于学生观测PWM产生过程,闭环控制复杂和使用时受单片机性能制约。
3)可编程逻辑器件编程产生PWM信号
基本原理是以复杂可编程逻辑器件(CPLD)或现场可编程门阵列器件(FPGA)为硬件基础,设计专用程序产生PWM信号。优点是电路简单、PWM频率和占空比定量准确。缺点是闭环控制复杂,产生SPWM信号难度大。
4)专用芯片产生PWM信号
是生产厂家设计、生产的特定功能芯片。优点是使用方便、安全,便于应用到产品设计中。缺点是不利于学生观测PWM产生过程和灵活调节各项参数。
6. 基于单片机的信号发生器设计答辩PPT
T0是可以使用的,但目前单片机教材多以T1做bps发生器,大多单片机以51系列为核,建议你自己用程序试一试!
7. 基于单片机的信号发生器设计有哪些拓展
PWM信号产生方法
脉冲宽度调制(PWM)信号广泛使用在电力变流技术中,以其作为控制信号可完成DC-DC变换(开关电源)、DC-AC变换(逆变电源)、AC-AC变换(斩控调压)和AC-DC变换(功率因数校正)。
产生PWM信号的方法有多种,现分别论述如下:
1)普通电子元件构成PWM发生器电路
基本原理是由三角波或锯齿波发生器产生高频调制波,经比较器产生PWM信号。三角波或锯齿波与可调直流电压比较,产生可调占空比PWM信号;与正弦基波比较,产生占空比按正弦规律变化的SPWM信号。此方法优点是成本低、各环节波形和电压值可观测、易于扩展应用电路等。 缺点是电路集成度低,不利于产品化。
2)单片机自动生成PWM信号
基本原理是由单片机内部集成PWM发生器模块在程序控制下产生PWM信号。优点是电路简单、便于程序控制。缺点是不利于学生观测PWM产生过程,闭环控制复杂和使用时受单片机性能制约。
3)可编程逻辑器件编程产生PWM信号
基本原理是以复杂可编程逻辑器件(CPLD)或现场可编程门阵列器件(FPGA)为硬件基础,设计专用程序产生PWM信号。优点是电路简单、PWM频率和占空比定量准确。缺点是闭环控制复杂,产生SPWM信号难度大。
4)专用芯片产生PWM信号
是生产厂家设计、生产的特定功能芯片。优点是使用方便、安全,便于应用到产品设计中。缺点是不利于学生观测PWM产生过程和灵活调节各项参数。