1. 霍尔传感器非线性的原因
基尔霍夫定律建立在电荷守恒定律、欧姆定律及电压环路定理的基础之上,在稳恒电流条件下严格成立。当基尔霍夫第一、第二方程组联合使用时,可正确迅速地计算出电路中各支路的电流值。由于似稳电流(低频交流电) 具有的电磁波长远大于电路的尺度,所以它在电路中每一瞬间的电流与电压均能在足够好的程度上满足基尔霍夫定律。因此,基尔霍夫定律的应用范围亦可扩展到交流电路之中。
它除了可以用于直流电路的分析,和用于似稳电路的分析,还可以用于含有电子元件的非线性电路的分析。运用基尔霍夫定律进行电路分析时,仅与电路的连接方式有关,而与构成该电路的元器件具有什么样的性质无关。
但用于交流电路的分析是,即对通过含时电流的电路进行分析时,由于通过闭合回路的磁通量是时间的函数,根据法拉第电磁感应定律,会有电动势E出现于闭合回路。所以,电场沿着闭合回路的线积分不等于零。此时回路方程应写作:
Σvk = E = - ΔΦ/Δt (磁场正方向与回路正方向相同时)
这是因为电流会将能量传递给磁场;反之亦然,磁场亦会将能量传递给电流。
对于含有电感器的电路,必需将基尔霍夫电压定律加以修正。由于含时电流的作用,电路的每一个电感器都会产生对应的电动势Ek。必需将这电动势纳入基尔霍夫电压定律,才能求得正确答案。
2. 霍尔传感器表现出来的特性
霍尔元件可用多种半导体材料制作,如Ge、Si、InSb、GaAs、InAs、InAsP以及多层半导体异质结构量子阱材料等等。霍尔元件是一种基于霍尔效应的磁传感器。
霍尔元件在各种应用条件下所选用的原则:
1.磁场测量。如果对被测磁场精度要求较高,如优于±0.5%,那么通常选用砷化镓霍尔元件,其灵敏度高,约为5~10mv/100mt,温度误差可忽略不计,且材料性能好,可做的体积较小。如果对被测磁场精度较低且对体积要求不高,如精度低于±0.5%时,最好选用硅和锗雹尔元件。
2.电流测量。大部分霍尔元件可以用于电流测量,要求精度较高时,选用砷化镓霍尔元件,精度不高时可选用砷化镓、硅、锗等霍尔元件。
3.信号的运算和测量。通常利用霍尔电势与控制电流、被测磁场成正比,并与被测磁场同霍尔元件表面的夹角成正弦关系的特性,制造函数发生器。利用霍尔元件输出与控制电流和被测磁场乘积成正比的特性,制造功率表、电度表等。
4.拉力和压力测量。选用霍尔件制成的传感器较其它材料制成的阵感器灵敏度和线性度更佳。
5.转速和脉冲测量。测量转速和脉冲时,通常是选用集成霍尔开关和锑化铟霍尔元件。如在录像机和摄像机中采用了锑铟霍尔元件替代电机的电刷,可以大大提高了使用寿命。
3. 霍尔传感器非线性的原因分析
几何磁阻效应是指半导体材料磁阻效应,与半导磁敏电阻的用途颇广,这里将简要介绍以下应用。
1. 作控制元件
可将磁敏电阻用于交流变换器、频率变换器、功率电压变换器、磁通密度电压变换器和位移电压变换器等等。
2.作计量元件
可将磁敏电阻用于磁场强度测量、位移测量、频率测量和功率因数测量等诸多方面。
3.作模拟元件
可在非线性模拟、平方模拟、立方模拟、三次代数式模拟和负阻抗模拟等方面使用。
4.作运算器
可用磁敏电阻在乘法器、除法器、平方器、开平方器、立方器和开立方器等方面使用。
5.作开关电路
可应用在在接近开关、磁卡文字识别和磁电编码器等方面。
6.作磁敏传感器
用磁敏电阻作核心元件的各种磁敏传感器,其工作原理都是相同的,只是根据用途、结构不同而种类各异。主要有:
① 测磁传感器。如新型磁通表,测定恒定磁场 及交变磁场或电机电器等剩磁的仪器,用于航海、 航空的导航仪器。
② 转速传感器。如构成新型 的数字式转速表、频率计等。
③ 位移和角位移传感器。微位移传感器是工业用机器人的基本器件。
④ 铁磁物质探伤用的传感器。
⑤ 可变电阻器、无接触电位器以及无触点、高性能的磁开关(作定位及控制用)。
磁敏电阻和电子元件配合可以构成振荡器、乘法器、函数发生器、调制器、 交直流变换器和倍频器等,还可用来鉴别磁性 油墨印的纸币和票证的真伪。
4. 霍尔线性传感器工作原理及应用
由霍尔传感器的工作原理可知,U=KIB;即霍尔元件实际感应的是所在位置的磁场强度B的大小。实验中,霍尔元件卫衣的线性性实际上反映了空间磁场的线性分布,揭示了元件测量处磁场的线性分布。
实际的输入输出与拟合的理想的直线的偏离程度的变化 当X不同的时候 实际的输出值与根据拟合直线得到的数值的偏离值是不相同的
5. 霍尔传感器是线性的吗
电动车的霍尔通用。
电动车上面的“霍尔”,是指“霍尔传感器”,一种对于磁性敏感的电子元件,在电机内部的用于感知磁铁极性,通过作用于把手处调节电机速度。
当磁钢离霍尔集成电路较近时,霍尔电压大(开),磁场偏离集成片,霍尔电压消失(关)。这样,霍尔集成电路的输出电压的变化,就能表示出轴处在某一位置,利用这一工作原理,可控制电机转动速度,从而达到控制电动车速度的目的。
扩展资料
“霍尔传感器”的相关应用:
1、位移测量
两块永久磁铁同极性相对放置,将线性型霍尔传感器置于中间,其磁感应强度为零,这个点可作为位移的零点,当霍尔传感器在Z轴上作位移时,传感器有一个电压输出,电压大小与位移大小成正比。
2、力测量
把拉力、压力等参数变成位移,便可测出拉力及压力的大小,按这一原理可制成的力传感器。
3、角速度测量
在非磁性材料的圆盘边上粘一块磁钢,霍尔传感器放在靠近圆盘边缘处,圆盘旋转一周,霍尔传感器就输出一个脉冲,从而可测出转数(计数器),若接入频率计,便可测出转速。
4、线速度测量
如果把开关型霍尔传感器按预定位置有规律地布置在轨道上,当装在运动车辆上的永磁体经过它时,可以从测量电路上测得脉冲信号。根据脉冲信号的分布可以测出车辆的运动速度。
6. 霍尔传感器非线性的原因有哪些
灵敏度是电桥测量技术的一个重要指标,电桥的灵敏度可以用电桥测量臂的单位相对变化量引出输出端电压或电流的变化来表示。
霍尔元件灵敏度传感器灵敏度计算公式非平衡电桥测量热敏电阻的温度系数惠斯登电桥测电阻误差分析小信号等效电路怎么画为什么电阻用色环表示阻值示波器为什么能显示被测信号的波形rlc元件阻抗特性的测定实验报告线性电阻与非线性电阻的概念是什么万用表工作原理
即:
Su=⊿Uo/(⊿R/R)或Si=⊿Io(⊿R/R)
分别表示电桥的电压灵敏度和电流灵敏度。
测量电桥的桥臂电阻一般都应该按最大灵敏度来选择。
电桥电路有单臂桥、双臂桥、全桥之分
1、单臂变化时⊿Uo=±0.25U·⊿R/R
2、两臂变化时⊿Uo=±0.5U·⊿R/R
3、四臂变化时⊿Uo=±U·⊿R/R
有上述计算式可知,测量电桥输出给放大器的电压大小,是由驱动电源电压U和桥臂电阻的相对变化量决定的,而且是正比关系。
由电桥灵敏度的公式可知,提高测量电桥的灵敏度,靠提高驱动电源电压和增加变化的桥臂即可达到。
7. 霍尔传感器灵敏度和非线性误差
打开电脑之后,霍尔元件灵敏度是固定的吗?
这个不一定,我们也可以选择修改灵敏度
8. 霍尔传感器非线性的原因是什么
高端。
优点:1、灵敏度较高,2、体积很小,便于制成特殊规格的探头,例如只有零点几毫米厚的磁场强度仪。
缺点:互换性差,信号随温度变化,非线性输出,最好用单片机进行非线性和温度校正。
简单,可靠性高,应用范围广。缺点就是价格较贵!
9. 霍尔传感器不稳定
可能是电机霍尔接线接触不良,也会出现速度不稳定的情况,对于此类情况,修复接线就好。而如果是霍尔损坏造成速度不稳定的,就只能选择更换霍尔。
当然也有可能是控制器出现故障造成电动车度不稳定,对于此类情况更换控制器就可以了。
当然,如果你仍然无法解决电动车速度不稳定的情况,建议去找专业的维修师傅,因为如果你不维修,很可能因为这一个问题引起新的问题。不过,在日常生活中我们也要注意加强对电动车保养,这样就可以大大提升电动车使用寿命。