三极管反向(二极管反向偏)

海潮机械 2022-12-29 02:54 编辑:admin 289阅读

1. 二极管反向偏

中大功率的LED(发光二极管)的反向击穿电压一般在30V-60V之间(有离散性,不是完全一样的),而正向工作电压约3V,所以其正向电压最好不要超过3V,否则容易烧毁。

小功率的发光二极管正常工作电流在10

30mA范围内。通常正向压降值在1.5

3V范围内。发光二极管的反向耐压一般在6V左右。

发光二极管的反向耐压(即反向击穿电压)值比普通二极管的小,所以使用时,为了防止击穿造成发光二极管不发光,在电路中要加接二极管来保护.

2. 二极管反向偏置时,反向电流随反向电压的增大而增大

二极管正向击穿电流应该是零

反向特性在电子电路中,二极管的正极接在低电位端,负极接在高电位端,此时二极管中几乎没有电流流过,此时二极管处于截止状态,这种连接方式,称为反向偏置。二极管处于反向偏置时,仍然会有微弱的反向电流流过二极管,称为漏电流。当二极管两端的反向电压增大到某一数值,反向电流会急剧增大,二极管将失去单方向导电特性,这种状态称为二极管的击穿。

3. 二极管反向偏置电流

反向偏置

与正向偏置相比,交换电源的正、负极位置,即P区接电源负极,N区接电源正极,就构成了PN结的反向偏置。在这些应用中,电路中的某些电压波形呈现脉冲形式,即在高电平(通常为5v)和低电平(通常为0V)之间变化的方波,这些高低电压信号的转换频率是很高的,使得二极管在“开”与“关”两种状态之间高速转换。当e (z)=5v时,二极管处于正向偏置状态,处于导通状态,钉电流流过电阻,电阻两端电压等于5-0.7=4.3v。这是因为反向电流是由少子漂移形成的,在热激发下,少子数量增多,PN结反向电流增大。

在一些二极管的重要应用中,器件常常要在高阻和低阻两种状态之间高速交替变化。一个电阻和一个硅二极管相连时,当电源电压从0V和5v交替变化时,电阻两端的电流也在交替变化。当e(j)=0V时.二极管处于高阻状态,也就是截止状态;因为没有电流流过电阻,电阻两端电压等于零。这种模式非常类似于整流器的作用.这就是数字电路中的两种极端状态——高电平和低电平。换句话说,就是设想所合电压值都是这两种状态中的一个。因为二极管在这些电路中的作用就是在不同电压水平下导通或截止,因而这一应用也称为开关电路。

典型的二极管开关电路包括两个或多个二极管,每—个二极管与一个独立的电压源相连。要正确理解开关电路的操作过程,就首先要确定每一个二极管是由哪一个电压源决定的,哪个处于导通状态,哪个处于截止状态。正确辨别处于哪种状态的关键是:如果二极管的阳极相较于阴极电位是正的,它就处于正向偏置状态,也就是说当二极管的阳极电位(相对于地)比阴极(相对于地)电位高,它就处于正向偏置状态。当然,也可以说成二极管的阴极电位(相对于地)比阳极(相对于地)电位低。相反,如果想让二极管处于反向偏置状态,就让二极管的阳极相较于阴极电位是负的,也相当于二极管的阴极相较于阳极是正的。

原理

PN结反向偏置时,外加电场与空间电荷区的内电场方向一致,同样会导致扩散与漂移运动平衡状态的破坏。外加电场驱使空间电荷区两侧的空穴和自由电子移走,使空间电荷区变宽,内电场增强,造成多数载流子扩散运动难于进行,同时加强了少数载流子的漂移运动,形成由N区流向P区的反向电流。但由于常温下少数载流子恒定且数量不多,故反向电流极小。电流小说明PN结的反向电阻很高,通常可以认为反向偏置的PN结不导电,基本上处于截止状态,这种情况在电子技术中称为PN结的反向阻断。

当外加的反向电压在一定范围内变化时,反向电流几乎不随外加电压的变化而变化。这是因为反向电流是由少子漂移形成的,在热激发下,少子数量增多,PN结反向电流增大。换句话说,只要温度不发生变化,少数载流子的浓度就不变,即使反向电压在允许的范围内增加再多,也无法使少子的数量增加,反向电流趋于恒定,因此反向电流又称为反向饱和电流。值得注意的是,反向电流是造成电路噪声的主要原因之一,因此,在设计电路时,必须考虑温度补偿问题。

4. 二极管反向偏置

二极管是常用的电子元件之一,它的特性就是单向导电,也就是电流只可以从二极管的一个方向流过,二极管的作用有整流电路,检波电路,稳压电路,各种调制电路,主要都是由二极管来构成的。

二极管工作原理

晶体二极管为一个由p型半导体和n型半导体形成的p-n结,在其界面处两侧形成空间电荷层,并建有自建电常当不存在外加电压时,由于p-n结两边载流子浓度差引起的扩散电流和自建电场引起的漂移电流相等而处于电平衡状态。

二极管工作原理知识讲解

N型、P型其实是针对载流子来说的,载流子分为电子和空穴,如果材料以电子载流子导电为主那么就叫N型,如果以空穴载流子导电为主那么就叫P型。因为电子带负电,所以N是negaTIve的缩写;而空穴带正电,所以P是posiTIve的缩写。

PN二极管正向导电性

在PN结两端外加电压,称为给PN结以偏置电压,给PN结加正向偏置电压,即P区接电源正极,N区接电源负极,此时称PN结为正向偏置。反之为反向偏置。

PN结正向偏置

由于外加电源产生的外电场的方向与PN结产生的内电场方向相反,削弱了内电场,使PN结变薄,有利于两区多数载流子向对方扩散,形成正向电流,此时PN结处于正向导通状态

二极管工作原理知识讲解

PN结反向偏置

给PN结加反向偏置电压,即N区接电源正极,P区接电源负极,称PN结反向偏置(简称反偏)

由于外加电场与内电场的方向一致,因而加强了内电场,使PN结加宽,阻碍了多子的扩散运动

二极管工作原理知识讲解

二极管的结构主要是有PN结组成,二极管工作过程中所产生的正向导向性是是有PN结宽度的增减决定的。

外加电场与内电场的方向一致,因而加强了内电场,使PN结加宽,阻碍电子扩散,形成反向电流微弱。

5. 二极管反向偏是P区接电源

二极管的导电特性 二极管最重要的特性就是单方向导电性。在电路中,电流只能从二极管的正极流入,负极流出。下面通过简单的实验说明二极管的正向特性和反向特性。 1.正向特性。

在电子电路中,将二极管的正极接在高电位端,负极接在低电位端,二极管就会导通,这种连接方式,称为正向偏置。必须说明,当加在二极管两端的正向电压很小时,二极管仍然不能导通,流过二极管的正向电流十分微弱。

只有当正向电压达到某一数值(这一数值称为“门槛电压”,锗管约为0.2V,硅管约为0.6V)以后,二极管才能直正导通。

导通后二极管两端的电压基本上保持不变(锗管约为0.3V,硅管约为0.7V),称为二极管的“正向压降”。 2.反向特性。

在电子电路中,二极管的正极接在低电位端,负极接在高电位端,此时二极管中几乎没有电流流过,此时二极管处于截止状态,这种连接方式,称为反向偏置。二极管处于反向偏置时,仍然会有微弱的反向电流流过二极管,称为漏电流。

当二极管两端的反向电压增大到某一数值,反向电流会急剧增大,二极管将失去单方向导电特性,这种状态称为二极管的击穿。

6. 二极管反向偏置电压升高时,其正向电阻

当P N极的P区接电源正极,N区接电源负极时,称为外加正向电压,也叫正向偏置。当P区接电源负极,N区接电源正极时,称为外加反向电压,也叫反向偏置。

正向偏置时,二极管处于导通状态;反向偏置时,二极管处于截止状态。

7. 二极管反向偏置是什么意思

三极管电路,一般不叫正向偏置或反向偏置,都要设置正确的静态工作点。正向偏置和反向偏置是针对PN结或二极管说的。

  什么叫反向偏置电压,

  反向偏置电压就是指三极管的两个电极之间的PN结所施加的电压极性与PN结极性相反的电压;

  什么叫正向偏置电压

  正向偏置电压就是指三极管的两个电极之间的PN结所施加的电压极性与PN结极性相同的电压;

  比如:集电结反偏就是指C和B之间的PN结两端有一个反向偏置电压。

8. 二极管反向偏置电压

二极管的电流与其端电压的关系称为伏安特性。

 二极管的电流方程:I = Is · [ e^(UD / UT) - 1] ,其中UD为施加的电压,UT为温度电压当量(常温下为26mV)若正向电压 UD 远远大于 UT,-1可省略,公式为:I = Is · e^(UD / UT)若反向电压 UD 的绝对值 远远大于 UT,e^( |UD| / UT)约为 e 的0次方,公式为:I = - Is,此时电流为反向饱和电流,与反向偏置电压数值无关

9. 二极管反向偏置等效电路

两个二极管的反向并联一定程度上可以当稳压管使用,这也是稳压管的工作原理,一个普通的二极管并联一个反向的特殊的二极管,不过那个特殊的二极管是经过特殊的工艺,当他通电流时能是的在一定范围的电流的范围内,保持电压的不变。

1、外接直流供电的电器,在直流电源上反向并联一只二极管作用是防外接直流电源正负接反。如果接反,这只二极管就会过电,把外接电源短路掉,此时就会断保险或其它的保护起作用,从而保护电器。这个二极管要用大电流数的整流二极管。车载电器大都会这样设计。

2、某些电路如果过压后会造成很大破坏的。为了保证电路安全。会在直流电源上并联略高于正常电压值的稳压二极管。当电源电压过高时,此稳压管就起作用,电压就不能再升高,或者稳压管短路性坏掉,引起保护电路起动。在一些信号线上也会用这个方法。

3、用直流电流几十毫安以下的电路,如果需要稳压,可以用一只稳压二极管配一只电阻组成稳压电路。这只稳压二极管的接法也是反向并联在电子电路的直流电源上,利用稳压二极管的特性,把经电阻送来的不稳的直流电压变为稳定。

4、在信号线上反向并联两只二极管,是对信号进行限幅。这种二极管选开关二极管。

扩展资料:

二极管的导电特性:

二极管最重要的特性就是单方向导电性。在电路中,电流只能从二极管的正极流入,负极流出。

1、正向特性:

在电子电路中,将二极管的正极接在高电位端,负极接在低电位端,二极管就会导通,这种连接方式,称为正向偏置。必须说明,当加在二极管两端的正向电压很小时,二极管仍然不能导通,流过二极管的正向电流十分微弱。只有当正向电压达到某一数值(这一数值称为“门坎电压”,又称“死区电压”,锗管约为0.1V,硅管约为0.5V)以后,二极管才能真正导通。导通后二极管两端的电压基本上保持不变(锗管约为0.3V,硅管约为0.7V),称为二极管的“正向压降”。

2、反向特性:

在电子电路中,二极管的正极接在低电位端,负极接在高电位端,此时二极管中几乎没有电流流过,此时二极管处于截止状态,这种连接方式,称为反向偏置。二极管处于反向偏置时,仍然会有微弱的反向电流流过二极管,称为漏电流。当二极管两端的反向电压增大到某一数值,反向电流会急剧增大,二极管将失去单方向导电特性,这种状态称为二极管的击穿。

参考资料来源:

参考资料来源: