1. 旋臂吊起重机
一般起重机吊臂的仰角会设计在65~75度左右,仰角小,起升高度受限,仰角太大则幅度小,重物离车体和臂架太近。
2. 旋臂吊起重机怎么固定
工艺流程
施工准备→加工构件→安装悬臂构件支撑体系→检査和验收→梁体吊装桥面系施工。
施工方法
1.施工准备:
1)墩柱已施工完毕,并经检查合格。
2)场地平整。
3)根据尺寸,制作支撑构件。
4)支撑构件、支座等运输到现场。
2.墩柱施工完毕后,对其各项指标进行检测,合格后用水准仪和钢卷尺测量出支座合格的标高及尺寸。
3.因墩柱高度较高,从经济和施工方便的角度出发,考虑采用悬臂支撑体系作为支架。悬臂构件加工制作时应按下述施工要求进行:
1)根据计算结果选购满足计算要求的工字钢材料。
2)连接部位采用电弧焊和高强度螺栓进行连接。
3)焊缝采用剖口焊接,焊缝饱满无夹渣、气眼、咬边现象。
4)螺栓连接部位的螺栓孔开孔大小适中,螺帽根据要求安装适度,不可过度使劲破坏螺纹。
4.悬臂支撑体系的安装
1)检査支撑面,确保悬臂构件于支撑面完全接触.采用人工机械配合完成安装。
2)考虑梁体在安装时对悬臂构件造成不平衡的压力,因此首先要进行2根临时支撑立柱的安装(梁体安装完成即可拆除),在安装临时支撑立柱过程中注意预留沉降量。
3)立柱安装完成后对悬臂梁和横梁进行安装,横梁与悬臂梁的工字钢之间放置砂箱,以便最终完成后的拆除。为保证其稳定安全性,墩身两侧横梁距采用对拉杆固定。
5.检查验收
支撑体系安装完毕,应对体系再次进行详细的检查,尤其注重检查体系的稳定性。检查验收合格后,方能开始进行梁体吊装。
3. 悬臂吊起重机
用于垂直升降或者垂直升降并水平移动重物的机电设备,其范围规定为额定起重量大于或者等于0.5t的升降机;额定起重量大于或者等于1t,且提升高度大于或者等于2m的起重机和承重形式固定的电动葫芦等属于起重机械类特种设备。
4. 旋臂吊起重机螺栓计算
小小螺丝学问大,4.8级的螺栓4代表着抗拉强度为400Mpa,8代表着屈强比为0.8,也就是说此螺栓的屈服强度为320Mpa,所以楼主在估算4.8级M20螺栓承载能力时的参考值应该是屈服强度320Mpa而不是抗拉强度400Mpa,而且320Mpa也是不能直接拿来计算的,切记机械里面的几乎一切零件只允许工作在弹性变形状态!绝对不能工作在屈服状态和塑变状态!再来谈谈4.8级的螺栓大概是个什么鬼吧,从它的屈服强度来看做这种螺栓的材料和Q345是一个级别的,在国内很有可能就是Q345直接搓丝的(正常应该是优质低碳碳素钢),Q345又是个什么鬼呢?这种材料是一种低合金结构钢,一般用来做焊接件,钢结构,如只保证屈服强度不保证化学成分,也就是里面的P、S、Si等含量控制不是很严格,而这些杂质对于钢材的断裂破坏有着深远的影响,螺纹连接安装的正确与否也直接导致了螺栓的承载的可靠程度,按照大量实验数据统计下来4.8级M20的螺栓其紧固力矩为176N.M左右,至于为什么需要这么大的紧固力矩这得从螺纹牙的受载情况说起,学过机械的都应该知道,螺栓破坏的形式80%是螺杆被拉断,而这个数据的前提是所有连接段的螺牙均参与了受载,比如参与旋合的螺母有5圈牙,你可以计算下5圈牙的根部受载面积是大于螺栓横截面面积的(这里把螺牙简化为悬臂梁来直观解释,而实际情况比这种简化复杂),所以螺牙根部的应力是<螺栓截面上的应力的,所以螺杆被拉断的概率大于螺牙滑丝的概率,而实际使用时5圈螺牙的受力并非均匀,如果螺栓没有预紧那么第一圈牙很可能承受了总载荷的60%,这种情况下第一圈螺牙极易滑丝,而只要第一牙滑丝即将发生多骨诺米牌效应,一发而不可收拾,这是一种很危险的状态,所以螺栓必须在有预紧力的状态下使用,即使是预紧了第一圈也承受了将近总载荷的30%左右的载荷而处于高应力状态,5圈过后的牙基本不受力,所以我们没有看到超长的螺母只有长的螺栓就是这个道理,螺栓连接还要考虑蠕变,延时断裂,连接刚性等等,楼主3吨的载荷也算不小了,结合我国标准件的制造水准和质量稳妥起见我建议楼主使用6枚8.8级的M20螺栓,并且按预紧力矩425N.M拧紧,不要小看螺丝上到火箭下到自行车都用的,真的懂螺丝会拧螺丝的不多了,最后推荐一本介绍螺纹的权威著作给楼主和众知友《高强度螺栓摩擦连接概论》日:田岛二郎著,螺栓玩的好的有瑞典的nord lock和日本的hard lock,我国火箭动车等重要场合的螺丝均采购于他们,他们的螺丝经过NASA最严格振动测试实验,对于一个螺丝都玩不好的国家实在是有太多的唏嘘......
5. 吊臂式起重机
因为省力杠杆省力的同时,却缩短了距离,费力杠杆的臂长比省力杠杆的要长,如果不用费力杠杆,起重机所能起重的高度就很短了!