换热器顺流(换热器顺流布置和逆流布置的优缺点)

海潮机械 2023-01-13 11:47 编辑:admin 168阅读

1. 换热器顺流布置和逆流布置的优缺点

1、一般情况下,逆流是好的,因为逆流的平均温差更大,在相同的热负荷要求下,所需的换热管面积更小,投资更小;

2、但也有顺流换热的,例如:防止高温侧温度降的太低,或防止低温侧温度升的过高;或者需要让冷侧急速升温,或热侧急速降温;或者冷却粘度大的流体等等。

2. 换热器顺流布置和逆流布置的优缺点是什么

换热器按传热方式的不同可分为混合式、蓄热式和间壁式三类。

混合式换热器是通过冷、热流体的直接接触、混合进行热量交换的换热器,又称接触式换热器。由于两流体混合换热后必须及时分离,这类换热器适合于气、液两流体之间的换热。例如,化工厂和发电厂所用的凉水塔中,热水由上往下喷淋,而冷空气自下而上吸入,在填充物的水膜表面或飞沫及水滴表面,热水和冷空气相互接触进行换热,热水被冷却,冷空气被加热,然后依靠两流体本身的密度差得以及时分离。

蓄热式换热器是利用冷、热流体交替流经蓄热室中的蓄热体(填料)表面,从而进行热量交换的换热器,如炼焦炉下方预热空气的蓄热室。这类换热器主要用于回收和利用高温废气的热量。以回收冷量为目的的同类设备称蓄冷器,多用于空气分离装置中。

间壁式换热器的冷、热流体被固体间壁隔开,并通过间壁进行热量交换的换热器,因此又称表面式换热器,这类换热器应用最广。

间壁式换热器根据传热面的结构不同可分为管式、板面式和其他型式。管式换热器以管子表面作为传热面,包括蛇管式换热器、套管式换热器和管壳式换热器等;板面式换热器以板面作为传热面,包括板式换热器、螺旋板换热器、板翅式换热器、板壳式换热器和伞板换热器等;其他型式换热器是为满足某些特殊要求而设计的换热器,如刮面式换热器、转盘式换热器和空气冷却器等。

换热器中流体的相对流向一般有顺流和逆流两种。顺流时,入口处两流体的温差最大,并沿传热表面逐渐减小,至出口处温差为最小。逆流时,沿传热表面两流体的温差分布较均匀。在冷、热流体的进出口温度一定的条件下,当两种流体都无相变时,以逆流的平均温差最大顺流最小

3. 什么叫换热器的顺流布置和逆流布置

1)顺流式又称并流式,其内冷 、热两种流体平行地向着同方向流动,即冷 、热两种流体由同一端进入换热器。

  2)逆流式,两种流体也是平行流体,但它们的流动方向相反,即冷 、热两种流体逆向流动,由相对得到两端进入换热器,向着相反的方向流动,并由相对的两端离开换热器。

  3)叉流式又称错流式,两种流体的流动方向互相垂直交叉。

  4)混流式又称错流式,两种流体的流体过程中既有顺流部分,又有逆流部分。

  顺流和逆流分析比较: 在进出口温度相同的条件下,逆流的平均温差最大,顺流的平均温差最小,顺流时,冷流体的出口温度总是低于热流体的出口温度,而逆流时冷流体的出口温度却可能超过热流体的出口温度,以此来看,热质交换器应当尽量布置成逆流,而尽可能避免布置成顺流,但逆流也有一定的缺点,即冷流体和热流体的最高温度发生在换热器的同一端,使得此处的壁温较高,为了降低这里的壁温,有时有意改为顺流。 当冷、热流体中有一种发生相变时,或者当两种流体的热容量C相差较大,或者冷、热流体之间的温差比冷、热流体本身的温度变化大得多时,这三种情况下顺流、逆流的差别就不显著了。

4. 顺逆流换热器的概念和特点

热管换热器的构造及原理: 热管是一种高效传热元件,其导热能力比金属高几百倍至数千倍。

热管还具有均温特性好、热流密度可调、传热方向可逆等特性。

用它组成热管换热器不仅具有热管固有的传热量大、温差小、重量轻体积小、热响应迅速等特点,而且还具有安装方便、维修简单、使用寿命长、阻力损失小、进、排风流道便于分隔、互不渗漏等特点。

热管是由内壁加工有槽道的两端密封的铝(轧)翅片管经清洗并抽成高真空后注入最佳液态工质而成,随注入液态工质的成分和比例不同,分为KLS低温热管换热器、GRSC-A中温热管换热器、GRSC-B高温热管换热器。

热管一端受热时管内工质汽化,从热源吸收汽化热,汽化后蒸汽向另一端流动并遇冷凝结向散热区放出潜热。

冷凝液借毛细力和重力的作用回流,继续受热汽化,这样往复循环将大量热量从加热区传递到散热区。

热管内热量传递是通过工质的相变过程进行的。

将热管元件按一定行列间距布置,成束装在框架的壳体内,用中间隔板将热管的加热段和散热段隔开,构成热管换热器。热管换热器主要特点:

a. 热管换热器可以通过换热器的中隔板使冷热流体完全分开,在运行过程中单根热管因为磨损、腐蚀、超温等原因发生破坏,也只是单根热管失效,而不会发生冷热流体的掺杂。

所以热管换热器用于易然、易爆、腐蚀等流体的换热场合具有很高的可靠性。

b. 热管换热器的冷、热流体完全分开流动,可以比较容易的实现冷、热流体的完全逆流换热;同时冷热流体均在管外流动,由于管外流动的换热系数远高于管内流动的换热系数,且两侧受热面均可采用扩展受热面。

用于品位较低的热能的回收非常经济。

c. 对于含尘量较高的流体,热管换热器可以通过热管结构尺寸,扩展受热面形式,以解决换热器的磨损堵灰问题。

d.热管换热器用于带有腐蚀性的烟气的余热回收时,可以通过调整蒸发段、冷凝段的传热面积来调整热管管壁温度,使热管尽可能避开最大的腐蚀区域。实例可以到中国知网(http://www.edu.cnki.net/)搜索,那里有很多相关的学术论文。希望对你有所帮助!

5. 顺流和逆流换热器各有什么优缺点

换热器是将热流体的部分热量传递给冷流体的设备,又称热交换器。

换热器的应用广泛,日常生活中取暖用的暖气散热片、汽轮机装置中的凝汽器和航天火箭上的油冷却器等,都是换热器。它还广泛应用于化工、石油、动力和原子能等工业部门。它的主要功能是保证工艺过程对介质所要求的特定温度,同时也是提高能源利用率的主要设备之一。

换热器既可是一种单独的设备,如加热器、冷却器和凝汽器等;也可是某一工艺设备的组成部分,如氨合成塔内的热交换器。

由于制造工艺和科学水平的限制,早期的换热器只能采用简单的结构,而且传热面积小、体积大和笨重,如蛇管式换热器等。随着制造工艺的发展,逐步形成一种管壳式换热器,它不仅单位体积具有较大的传热面积,而且传热效果也较好,长期以来在工业生产中成为一种典型的换热器。

二十世纪20年代出现板式换热器,并应用于食品工业。以板代管制成的换热器,结构紧凑,传热效果好,因此陆续发展为多种形式。30年代初,瑞典首次制成螺旋板换热器。接着英国用钎焊法制造出一种由铜及其合金材料制成的板翅式换热器,用于飞机发动机的散热。30年代末,瑞典又制造出第一台板壳式换热器,用于纸浆工厂。在此期间,为了解决强腐蚀性介质的换热问题,人们对新型材料制成的换热器开始注意。

60年代左右,由于空间技术和尖端科学的迅速发展,迫切需要各种高效能紧凑型的换热器,再加上冲压、钎焊和密封等技术的发展,换热器制造工艺得到进一步完善,从而推动了紧凑型板面式换热器的蓬勃发展和广泛应用。此外,自60年代开始,为了适应高温和高压条件下的换热和节能的需要,典型的管壳式换热器也得到了进一步的发展。70年代中期,为了强化传热,在研究和发展热管的基础上又创制出热管式换热器。

换热器按传热方式的不同可分为混合式、蓄热式和间壁式三类。

混合式换热器是通过冷、热流体的直接接触、混合进行热量交换的换热器,又称接触式换热器。由于两流体混合换热后必须及时分离,这类换热器适合于气、液两流体之间的换热。例如,化工厂和发电厂所用的凉水塔中,热水由上往下喷淋,而冷空气自下而上吸入,在填充物的水膜表面或飞沫及水滴表面,热水和冷空气相互接触进行换热,热水被冷却,冷空气被加热,然后依靠两流体本身的密度差得以及时分离。

蓄热式换热器是利用冷、热流体交替流经蓄热室中的蓄热体(填料)表面,从而进行热量交换的换热器,如炼焦炉下方预热空气的蓄热室。这类换热器主要用于回收和利用高温废气的热量。以回收冷量为目的的同类设备称蓄冷器,多用于空气分离装置中。

间壁式换热器的冷、热流体被固体间壁隔开,并通过间壁进行热量交换的换热器,因此又称表面式换热器,这类换热器应用最广。

间壁式换热器根据传热面的结构不同可分为管式、板面式和其他型式。管式换热器以管子表面作为传热面,包括蛇管式换热器、套管式换热器和管壳式换热器等;板面式换热器以板面作为传热面,包括板式换热器、螺旋板换热器、板翅式换热器、板壳式换热器和伞板换热器等;其他型式换热器是为满足某些特殊要求而设计的换热器,如刮面式换热器、转盘式换热器和空气冷却器等。

换热器中流体的相对流向一般有顺流和逆流两种。顺流时,入口处两流体的温差最大,并沿传热表面逐渐减小,至出口处温差为最小。逆流时,沿传热表面两流体的温差分布较均匀。在冷、热流体的进出口温度一定的条件下,当两种流体都无相变时,以逆流的平均温差最大顺流最小。

在完成同样传热量的条件下,采用逆流可使平均温差增大,换热器的传热面积减小;若传热面积不变,采用逆流时可使加热或冷却流体的消耗量降低。前者可节省设备费,后者可节省操作费,故在设计或生产使用中应尽量采用逆流换热。

当冷、热流体两者或其中一种有物相变化(沸腾或冷凝)时,由于相变时只放出或吸收汽化潜热,流体本身的温度并无变化,因此流体的进出口温度相等,这时两流体的温差就与流体的流向选择无关了。除顺流和逆流这两种流向外,还有错流和折流等流向。

在传热过程中,降低间壁式换热器中的热阻,以提高传热系数是一个重要的问题。热阻主要来源于间壁两侧粘滞于传热面上的流体薄层(称为边界层),和换热器使用中在壁两侧形成的污垢层,金属壁的热阻相对较小。

增加流体的流速和扰动性,可减薄边界层,降低热阻提高给热系数。但增加流体流速会使能量消耗增加,故设计时应在减小热阻和降低能耗之间作合理的协调。为了降低污垢的热阻,可设法延缓污垢的形成,并定期清洗传热面。

一般换热器都用金属材料制成,其中碳素钢和低合金钢大多用于制造中、低压换热器;不锈钢除主要用于不同的耐腐蚀条件外,奥氏体不锈钢还可作为耐高、低温的材料;铜、铝及其合金多用于制造低温换热器;镍合金则用于高温条件下;非金属材料除制作垫片零件外,有些已开始用于制作非金属材料的耐蚀换热器,如石墨换热器、氟塑料换热器和玻璃换热器等。