一、高效换热技术
决定全热交换率的是全热交换机芯,材质的不同也会影响热交换率。
1、纸质热交换芯体成本较低,在日系品牌和部分国内品牌使用较多。但纸质材质由于自身的缺陷,在湿度较大的环境中使用易变形、变质、发霉,且容易滋生细菌,产生二次污染,如使用一段时间后清理也不能水洗,使用寿命较短。
2、铝箔芯体基本上解决了纸质芯体的缺陷和诸多危害问题,它坚固耐用、不易变形、可以用水冲洗、消毒,使用时间长等,大部分用于冷热交换新风系统里面,但其缺陷是成本相对较大,价格略高,且无法进行潜热(湿度)交换。
3、德国高分子材料全热交换芯体:铝箔芯体虽好,但在潜热交换,即湿度转换较低。爱品生采用德国高分子材料,则不但保持了铝箔芯体的高效热交换,也延续了纸质芯体稳定的湿度转换能力,保证了室内的温湿度平衡,不至于过于干燥,
二、高效换热技术的概念
国产的。
凯雪冷机,是由河南郑州凯雪冷链股份有限公司生产的,凯雪制冷机设计合理,耐用,灵敏度高,可靠,高效换热全铝平行流芯体,内螺纹铜管,高效散热片,具有操作方便,美观,强度高,耐腐蚀,耐老化,安装方便等等优势。希望我的回答能够帮助到你。
三、高效换热器及其节能应用
列管式换热器
列管式换热器(tubularexchanger)是目前化工及酒精生产上应用最广的一种换热器。它主要由壳体、管板、换热管、封头、折流挡板等组成。所需材质,可分别采用普通碳钢、紫铜、不锈钢制作。列管式换热器必须从结构上考虑热膨胀的影响,采取各种补偿的办法,消除或减小热应力,根据所采取的温差补偿措施。列管式换热器在制作时,管板与列管的焊接一般采用手工电弧焊,焊缝形状存在不同程度的缺陷,如凹陷、气孔、夹渣等,焊缝应力的分布也不均匀。
基本信息
中文名
列管式换热器
外文名
tubular exchanger
分类
器械
种类
固定管板式
列管式换热器的结构比较简单、紧凑、造价便宜,但管外不能机械清洗。此种换热器管束连接在管板上,管板分别焊在外壳两端,并在其上连接有顶盖,顶盖和壳体装有流体进出口接管。通常在管外装置一系列垂直于管束的挡板。同时管子和管板与外壳的连接都是刚性的,而管内管外是两种不同温度的流体。因此,当管壁与壳壁温差较大时,由于两者的热膨胀不同,产生了很大的温差应力,以至管子扭弯或使管子从管板上松脱,甚至毁坏换热器。
为了克服温差应力必须有温差补偿装置,一般在管壁与壳壁温度相差50℃以上时,为安全起见,换热器应有温差补偿装置。但补偿装置(膨胀节)只能用在壳壁与管壁温差低于60~70℃和壳程流体压强不高的情况。一般壳程压强超过0.6Mpa时由于补偿圈过厚,难以伸缩,失去温差补偿的作用,就应考虑其他结构。
浮头式
换热器的一块管板用法兰与外壳相连接,另一块管板不与外壳连接,以使管子受热或冷却时可以自由伸缩,但在这块管板上连接一个顶盖,称之为“浮头”,所以这种换热器叫做浮头式换热器。其优点是:管束可以拉出,以便清洗;管束的膨胀不变壳体约束,因而当两种换热器介质的温差大时,不会因管束与壳体的热膨胀量的不同而产生温差应力。其缺点为结构复杂,造价高。
填料函式
这类换热器管束一端可以自由膨胀,结构比浮头式简单,造价也比浮头式低。但壳程内介质有外漏的可能,壳程中不应处理易挥发、易燃、易爆和有毒的介质。
U型管式
U形管式换热器,每根管子都弯成U形,两端固定在同一块管板上,每根管子皆可自由伸缩,从而解决热补偿问题。管程至少为两程,管束可以抽出清洗,管子可以自由膨胀。其缺点是管子内壁清洗困难,管子更换困难,管板上排列的管子少。优点是结构简单,质量轻,适用于高温高压条件。
涡流热膜
涡流热膜换热器采用最新的涡流热膜传热技术,通过改变流体运动状态来增加传热效果,当介质经过涡流管表面时,强力冲刷管子表面,从而提高换热效率。最高可达10000W/m2℃。同时这种结构实现了耐腐蚀、耐高温、耐高压、防结垢功能。其它类型的换热器的流体通道为固定方向流形式,在换热管表面形成绕流,对流换热系数降低。
据【换热设备推广中心】的资料显示,涡流热膜换热器的最大特点在于经济性和安全性统一。由于考虑了换热管之间,换热管和壳体之间流动关系,不再使用折流板强行阻挡的方式逼出湍流,而是靠换热管之间自然诱导形成交替漩涡流,并在保证换热管不互相摩擦的前提下保持应有的颤动力度。换热管的刚性和柔性配置良好,不会彼此碰撞,既克服了浮动盘管换热器之间相互碰撞造成损伤的问题,又避免了普通管壳式换热器易结垢的问题。
涡流热膜换热器性能特点:
1.高效节能,该换热器传热系数为6000-8000W/m2.0C;
2.全不锈钢制作,使用寿命长,可达20年以上,十年内出现换热器质量问题免费更换;
3.改层流为湍流,提高了换热效率,降低了热阻;
4.换热速度快,耐高温(400℃),耐高压(2.5Mpa);
5.结构紧凑,占地面积小,重量轻,安装方便,节约土建投资;
6.设计灵活,规格齐全,实用针对性强,节约资金;
7.应用条件广泛,适用较大的压力、温度范围和多种介质热交换;
8.维护费用低,易操作,清垢周期长,清洗方便。
9.采用纳米热膜技术,显着增大传热系数。
四、高效换热技术论文
热动方面的工程师不是考的,而是评审的。不过,也得参加职称英语和计算机的考试。热动工程师评审条件如下:工程师是中级职称,不是考的,而是考核评定,即需要一定年限的本专业工作经验和业绩为保证。
正常来说评热动工程师需要职称英语(B级,高工需要A级)和专业技术人员计算机技能考试四模块考试成绩合格,这是必备条件。
取得专业助理工程师初级职称并获聘满5年,这也是必备条件,除非你工作业绩特别突出,可以适当减少该年限,不过最多只少一年。
在有正式刊号的杂志上发表热动专业相关论文一篇,加上个人的工作业绩,就可以参评了。各个省市对工程师考核评定要求有细微不同,具体属于哪个地区可以咨询当地人事部门,因为职称证书都是由省人事厅颁发。
五、新型高效换热器
目前主要采用下述措施:
1、研究应用强化传热技术,扩展传热面积和提高传热表面的传热性能;
2、改变换热器折流板结构(折流杆技术等)以提高壳程的传热膜系数,增加介质的湍流性,防止介质走短流;
3换热管内外表面防污垢技术(防污垢涂层技术)。
4、应用数值传热技术的研究。目前研究应用强化传热技术是提高传热效率很有效的一种技术措施,本文主要讨论应用强化传热技术对换热器进行改进。所谓换热器传热强化或增强传热是指通过对影响传热的各种因素的分析与计算,采取某些技术措施以提高换热设备的传热量或者在满足原有传热量条件下,使它的体积缩小。
换热器传热强化通常使用的手段包括三类:扩展传热面积(F);加大传热温差;提高传热系数(K)。
1.扩展传热面积F。扩展传热面积是增加传热效果使用最多、最简单的一种方法。这种方法现在已经淘汰。现在使用最多的是通过合理地提高设备单位体积的传热面积来达到增强传热效果的目的,如在换热器上大量使用单位体积传热面积比较大的翅片管、波纹管、板翅传热面等材料。
2.加大传热温差△t。加大换热器传热温差△t是加强换热器换热效果常用的措施之一。但是,增加换热器传热温差△t是有一定限度的,我们不能把它作为增强换热器传热效果最主要的手段,使用过程中我们应该考虑到实际工艺或设备条件上是否允许。
3.增强传热系数(K)。增强换热器传热效果最积极的措施就是设法提高设备的传热系数(K)。换热器传热系数(K)值越低,换热器传热效果也就越差。换热器传热系数(K)值也就越高,换热器传热效果也就越好。
上述三方面增强传热效果的方法在换热器都或多或少的获得了使用,但是由于扩展传热面积及加大传热温差常常受到场地、设备、资金、效果的限制,不可能无限制的增强。所以,当前换热器强化传热的研究主要方向就是:如何通过控制换热器传热系数(K)值来提高换热器强化传热的效果。我们现在使用最多的提高换热器传热系数(K)值的技术就是:在换热器换热管中加扰流子添加物,通过扰流子添加物的作用,使换热器传热过程的分热阻大大的降低,并且最终来达到提高换热器传热系数(K)值的目的。
(1)换热器上扰流子强化传热的使用。为了提高换热器的传热系数,强化换热器的传热效率,国内外出现了多种强化元件及强化措施,主要包括在换热器中使用螺纹管、横纹管、缩放管、大导程多头沟槽管、整体双面螺旋翅片管以及互程技术在换热管中加扰流子来强化管内换热等。其中,在换热管中加扰流子添加物进行强化传热在工业上已使用了多年,它可以使换热器总的传热系数出现明显的提高,可以大大节省换热器的传热面积,降低设备重量,节约大量金属材料,它的许多优点已日益引起人们的重视。
(2)采用异形管。为了强化管束传热,在工程应用上已越来越广泛地采用异形管来代替圆管。如椭圆管、滴形管、透镜管等。其中以扁管和椭圆管应用最广。以椭圆矩形翅片管为例,经研究证明与圆管相比,由于椭圆管的流动性好,流动阻力小,且在相同的管横截面积下,椭圆管的传热周边比圆管长;从布置上讲在单位体积内可布置更多的管子,因此单位体积的传热量高。在满足一定换热量的前提下,换热器向着高效、紧凑的方向发展。强化传热技术的应用,国内研发了一些新型高效换热器如内凸肋管式换热器、螺旋式高效换热器。