石墨模具密度(石墨模具密度越高有什么好处)

海潮机械 2023-01-04 22:07 编辑:admin 131阅读

1. 石墨模具密度

体积密度就是单位体积下的重量,真密度是单位体积下去掉气孔的真实密度。

所以一般是真密度比体积密度的数值要大。

2. 石墨模具密度越高有什么好处

石墨由于其特殊结构,而具有如下特殊性质:

1) 耐高温性:石墨的熔点为3850±50℃,沸点为4250℃,即使经超高温电弧灼烧,重量的损失很小,热膨胀系数也很小。石墨强度随温度提高而加强,在2000℃时,石墨强度提高一倍。

2) 导电、导热性:石墨的导电性比一般非金属矿高一百倍。导热性超过钢、铁、铅等金属材料。导热系数随温度升高而降低,甚至在极高的温度下,石墨成绝热体。石墨能够导电是因为石墨中每个碳原子与其他碳原子只形成3个共价键,每个碳原子仍然保留1个自由电子来传输电荷。

3)润滑性:石墨的润滑性能取决于石墨鳞片的大小,鳞片越大,摩擦系数越小,润滑性能越好。

4)化学稳定性:石墨在常温下有良好的化学稳定性,能耐酸、耐碱和耐有机溶剂的腐蚀。

5)可塑性:石墨的韧性好,可碾成很薄的薄片。

6)抗热震性:石墨在常温下使用时能经受住温度的剧烈变化而不致破坏,温度突变时,石墨的体积变化不大,不会产生裂纹。

用途:

1、作耐火材料:石墨及其制品具有耐高温、高强度的性质,在冶金工业中主要用来制造石墨坩埚,在炼钢中常用石墨作钢锭之保护剂,冶金炉的内衬。

2.作导电材料:在电气工业上用作制造电极、电刷、碳棒、碳管、水银正流器的正极,石墨垫圈、电话零件,电视机显像管的涂层等。

3.作耐磨润滑材料:石墨在机械工业中常作为润滑剂。润滑油往往不能在高速、高温、高压的条件下使用,而石墨耐磨材料可以在200~2000 ℃温度中在很高的滑动速度下,不用润滑油工作。许多输送腐蚀介质的设备,广泛采用石墨材料制成活塞杯,密封圈和轴承,它们运转时勿需加入润滑油。石墨乳也是许多金属加工(拔丝、拉管)时的良好的润滑剂。

4.石墨具有良好的化学稳定性。经过特殊加工的石墨,具有耐腐蚀、导热性好,渗透率低等特点,就大量用于制作热交换器,反应槽、凝缩器、燃烧塔、吸收塔、冷却器、加热器、过滤器、泵设备。广泛应用于石油化工、湿法冶金、酸碱生产、合成纤维、造纸等工业部门,可节省大量的金属材料。

不透性石墨的品种因所含树脂不同,耐蚀性也有差异。如酚醛树脂浸渍者耐酸,但不耐碱;糠醇树脂浸渍者既耐酸,又耐碱。不同品种的耐热性也有差异:碳和石墨在还原性气氛中可耐2000~3000℃,在氧化气氛中分别在350℃和400℃开始氧化;不透性石墨品种随浸渍剂而异,一般由酚醛或糠醇浸渍者耐热在180℃以下。

5.作铸造、翻砂、压模及高温冶金材料:由于石墨的热膨胀系数小,而且能耐急冷急热的变化,可作为玻璃器的铸模,使用石墨后黑色金属得到铸件尺寸精确,表面光洁成品率高,不经加工或稍作加工就可使用,因而节省了大量金属。生产硬质合金等粉末冶金工艺,通常用石墨材料制成压模和烧结用的瓷舟。单晶硅的晶体生长坩埚,区域精炼容器,支架夹具,感应加热器等都是用高纯石墨加工而成的。此外石墨还可作真空冶炼的石墨隔热板和底座,高温电阻炉炉管,棒、板、格棚等元件。

6、用于原子能工业和国防工业:石墨具有良好的中子减速剂用于原子反应堆中,铀一石墨反应堆是应用较多的一种原子反应堆。作为动力用的原子能反应堆中的减速材料应当具有高熔点,稳定,耐腐蚀的性能,石墨完全可以满足上述要求。作为原子反应堆用的石墨纯度要求很高,杂质含量不应超过几十个PPM 。特别是其中硼含量应少于0.5PPM 。在国防工业中还用石墨制造固体燃料火箭的喷嘴,导弹的鼻锥,宇宙航行设备的零件,隔热材料和防射线材料。

7.石墨还能防止锅炉结垢,有关单位试验表明,在水中加入一定量的石墨粉(每吨水大约用4~5 克)能防止锅炉表面结垢。此外石墨涂在金属烟囱、屋顶、桥梁、管道上可以防腐防锈。

8.石墨可作铅笔芯、颜料、抛光剂。石墨经过特殊加工以后,可以制作各种特殊材料用于有关工业部门。

3. 石墨模具密度是多少

石墨的密度大约是2,所以一方石墨大约等于4000斤左右。

4. 模具金属材料密度

P20模具钢材出厂一般已预先硬化处理至285-330HB(30-36HRC),与瑞典618德国1.2311状态相当,可直接用于制模加工,并具有尺寸稳定性好的特点,预硬钢材才可满足一般用途需求,模具寿命可达50W模次左右,进口P20性能更好一些。 P20的力学性能如下: 硬度30HRC; 抗拉强度δb=1250MPa; 屈服强度δ0.2= 1140MPa; 伸长率δ5= 14%; 断面收缩率= 4.58% , 冲韧性值δk= 11.5J / cm²

5. 高密度石墨棒的密度

核石墨用于核工业方面的石墨材料。有原子反应堆用中子减速剂、反射剂、生产同位素用的热柱石墨、高温气冷堆用的球状石墨和块状石墨等等。石墨作为反应堆材料的优缺点如下:(1)石墨具有较高的散射截面和极低的热中子吸收截面,较高的散射截面用以慢化中子,低的吸收截面防止中子被吸收,使得核反应堆能够利用少量燃料达到临界或正常运行。(2)石墨是耐高温材料,它的三相点,15MPa时为4024℃,因此不能采用熔化、铸造、锻造等热加工方法制造而只能采用类似粉末冶金的方法。它不像金属那样强度随温度而下降,而是略有增加,在2000℃以下应用,不会出现问题。(3)石墨有良好的导热性能,在堆内可以有效地降低温度梯度,不致产生太大的热应力。(4)石墨化学性质非常稳定。除了高温下的氧化、水蒸气外,可以耐酸、碱、盐的腐蚀,因而可以用作熔盐核反应堆和铀铋核反应堆的堆芯构件。(5)石墨抗辐照性能极好,能长期在堆内服役30~40年。(6)石墨可加工性好,可以加工成各种形状的构件。(7)石墨原料丰富,价格便宜,容易制成纯度高、强度大、不同密度要求的各种核石墨,但石墨也有缺点,它是各向异性晶体结构,成层状分布,原子密集于a、b晶面,同层原子最近距离为0.141nm,相互为共价结合,具有较强的结合力;而层距离为0.335nm,层间结合力为范德瓦尔力,结合力较弱。这种各向异性在石墨的物理、强度、辐照等行为中都会强烈地表现出来。分类用于核反应堆炭素材料,按材料分有石墨类、炭质类、热解石墨和各向同性石墨、含硼石墨等。按用途分有减速材料(慢化剂)、反射材料、包壳、熔炼铀盐坩埚等。减速材料在核反应堆内U等核分裂物质在分裂时,放出的中子速度秒速约3万km(能量平均约为2MeV),很难命中原子核,所以为提高核分裂的几率,继续维持连锁反应,则必须减缓中子速度,使之变为秒速2000m的低速中子即所谓热中子(能量约为0.025ev)。减速材料的用途就是把这种高速中子减缓成慢中子。核石墨生产 目前核石墨生产基本上是在普通人造石墨生产工艺基础上开展起来的。针对核石墨需要高纯度、高密度、各向异性小的特点,对现行的石墨生产工艺、原料和设备加以改进,使之达到生产核石墨的要求。核石墨生产有4个主要问题,即高纯度、高密度、各向异性和机械加工。(1)高纯度。核石墨减速剂的纯度是最被重视的特性之一。首先选用纯度高、杂质含量少的石油焦和煤沥青作原料。原料杂质中硼含量要低,因1×10的硼含量相当于增加lmb的截面,高温石墨化大多数金属杂质在2800~3000℃挥发,而硼高于3000℃亦难除去,因硼与碳形成B4C3。对原料中硼含量要求极其严格,除原料外在生产中先后经10多道工序减少外来的杂质和合理工艺制度也是十分重要的。(2)高密度。核石墨应有较高的密度,一般控制在1.79/cm左右,基本上能满足石墨堆运行要求,石墨的体积密度表示慢化剂的有效慢化率,密度降低则单位体积内的原子数减少,慢化率也就降低。(3)各向异性小。石墨用于核反应堆时,由于温度上升产生热膨胀和辐照引起的维格纳(Wigner)生长。这种现象在垂直于挤压方向表现甚大,而平行于挤压方向表现较小,则石墨块不能按原始形状同样比例膨胀。因而石墨这种各向异性膨胀在由许多石墨块堆积而成的慢化层的结构是不能忽视的。石墨各向异性主要是由于石墨晶体结构具有极度的各向异性性质所致。另一方面在挤压成型时焦炭颗粒的排列对制品的各向异性也具有决定性的影响,因此要在成型过程中采取措施减少各向异性度。(4)机械加工。石墨减速层和反射层是由经过精加工的块状堆砌而成的。石墨砌体中有供燃料棒、控制棒、仪器和试验用的各种孔道,这些孔道均有准确的尺寸,此外所有的石墨块砌体能防止中子流和冷却气体的泄漏。为此核石墨加工比任何石墨制品加工要求有更高的精密度。实际上要求精度在几丝之内。为保证产品加工精度设有专用高精度加工机床。20世纪40年代以来,石墨曾用于铀――石墨堆、气冷堆、改进型气冷堆、生产堆、熔盐堆、液态金属堆、高温气冷堆……等堆型。各国在发展反应堆的同时,都在大力发展自己的核石墨工业。60年代各国先后用天然沥青砂熔烧成球形各向同性焦为原料制造气冷堆用石墨。采用了“二次焦”焦粉为原料(沥青焦粉先粉碎至数微米或120μm用沥青或树脂混捏后焙烧,再破碎至数百微米,成为具有各向同性的二次焦)。制成各向同性或接近各向同性的石墨制品用于高温气冷堆。在原料中掺入石墨粉控制焙烧和石墨化中的膨胀、收缩,防止大规格坯料开裂。在成型工艺中除采用挤压工艺外,还采用了模压成型、振动成型、等静压成型等。石墨在核反应堆中除用于减速材、反射材外,还应用了大量其他炭素材料,如熔炼铀盐的石墨坩埚,高温堆中燃料颗粒热解石墨包覆层,烧结炭块,大球球壳等。

6. 石墨材料密度

石墨(graphite)是一种结晶形碳。六方晶系,为铁墨色至深灰色。密度2.25克/厘米3,硬度1.5,溶点3652℃,沸点4827℃。质软,有滑腻感,可导电。化学性质不活泼,耐腐蚀,与酸、碱等不易反应。在空气或氧气中加强热,可燃烧并生成二氧化碳。强氧化剂会将它氧化成有机酸。用作抗摩剂和润滑材料,制作坩埚、电极、干电池、铅笔芯。

高纯度石墨可在核反应堆上作中子减速剂。常被称为炭精或黑铅,因为以前被误认为是铅。

7. 石墨模具密度计算公式

石墨是晶体结构介于原子晶体、金属晶体和分子晶体之间的一种属六方或三方晶系的过渡型晶体的自然元素矿物。

与金刚石和以美籍华裔矿物学家赵景德姓氏命名的赵击石等成同质多象。

在晶体中同层碳原子间以sp2杂化形成共价键,每个碳原子与另外三个碳原子相联,六个碳原子在同一平面上形成正六边形的环,伸展形成片层结构。

在同一平面的碳原子还各剩下一个p轨道,它们互相重叠,形成离域的π键电子在晶格中能自由移动,可以被激发,所以石墨有金属光泽,能导电、传热。

由于层与层间距离大,结合力(范德华力)小,各层可以滑动,所以石墨的密度比金刚石小,质软并有滑腻感。

灰黑,不透明固体,密度2.25g/cm3,熔点3652℃,沸点4827℃,硬度1。

化学性质稳定,耐腐蚀,同酸、碱等药剂不易发生反应。

687℃在氧气中燃烧生成二氧化碳。

可被强氧化剂如浓硝酸、高锰酸钾等氧化成有机酸。

可用作抗磨剂、润滑剂,高纯度石墨用作原子反应堆中的中子减速剂,还可用于制造坩埚、电极、电刷、干电池、石墨纤维、换热器、冷却器、电弧炉、弧光灯、铅笔的笔芯等。

8. 石墨的体积密度

石墨的化学式都是C。

C60是一种由60个碳原子构成的分子,形似足球,又名足球烯。C60是单纯由碳原子结合形成的稳定分子,它具有60个顶点和32个面,其中12个为正五边形,20个为正六边形。其相对分子质量约为720。

因为C60是石墨、金刚石的同素异形体,因此有科学家联想到用廉价的石墨作原料合成C60,也有人想到它含有苯环单元的结构,或许可以选用苯作原料合成C60。这些设想最后都实现了。1000g苯可以制得3gC70和C60的混合物(它们的比率为0.26~5.7)。

扩展资料:

C60常态下不导电,因为C60大得可以将其他原子放进它内部,并影响其物理性质,因而不可导电。另外,由于C60有大量游离电子,所以若把可作β衰变的放射性元素困在其内部,其半衰期可能会因此受到影响。

C60在室温下为紫红色固态分子晶体,有微弱荧光。C60分子的直径约为7.1埃(1埃= 10-10米,即一百亿分之一米),C60的密度为1.68g/cm3。分子轨道计算表明,足球烯具有较大的离域能。C60具有金属光泽,有许多优异性能,如超导、强磁性、耐高压、抗化学腐蚀、在光、电、磁等领域有潜在的应用前景。

9. 石墨模具密度多大

最高温度3600度

一、速度快;

石墨放电比铜快2-3倍,材料不易变形,在薄筋电极的加工上优势明显,铜的软化点在1000度左右,容易因受热而产生变形,石墨的升华温度为3650度左右,相比而言,石墨材料热膨胀系数只有铜材的1/30;

二、重量轻;

石墨的密度只有铜的1/5,大型电极进行放电加工时,能有效降低机床(EDM)的负担,更适用于大型模具的应用;

三、损耗小;

由于火花油中含有C原子,在放电加工时,高温导致火花油中的C原子被分解出来,而在石墨电极的表面形成保护膜,补偿了石墨电极的损耗;

四、无毛刺;

铜电极在加工结束后,还需手工进行去除毛刺,而石墨加工后没有毛刺,这不但节约了大量的成本和人力,同时更容易实现自动化生产;

五、易抛光;

由于石墨的切削阻力只有铜材的1/5,操作上更容易进行手工研磨和抛光;

六、成本低;

由于近几年铜材价格不断上涨,如今,各方面同性石墨的价格比铜的更低;相同体积下东洋碳素的普遍性,石墨产品的价格比铜低百分之三十到六十,价格比较稳定,短期价格波动相对来讲比较小。