1. 谐波减速器齿形设计
目前所有回答都是错的,正确答案是『斜齿轮受齿距误差影响更小、传动精度更高』,斜齿轮最大优势是高传动精度,其次才是『高强度』或『噪音/震动小』。
即使是直齿轮,通过修形(或简单地增加齿厚)也能达到『高强度』、通过变位也能达到『噪音/震动小』(端面重合度 = 2 即可,并不需要 3 的斜齿轮)。
某些情况下(齿面强度低、齿根强度高的设计),斜齿轮的强度甚至还低于直齿轮。
此外,斜齿轮的制造成本远高于直齿轮(3 倍以上,特别是斜内齿圈,能做的公司不多),还需要使用角接触轴承(价格是普通轴承 2~3 倍),绝大多数传动系统对体积和重量并不敏感(至少不会达到锱铢必较的程度),而传动精度几乎是所有传动系统的第一追求。
(传动精度有两个指标,其一是角度误差,其二是扭矩误差,它们本质上是等价的,本文以『扭矩误差』为主;本回答讨论的是直径不超过 300 mm 的常规齿轮,工业大齿轮不在讨论范围内;关于齿轮制造成本,评论区很多齿轮厂的朋友都发表了自己的看法,但这方面的讨论是没有意义也没有尽头的,齿轮和齿轮之间差异极大,要求不同、成本也不同,精密传动中使用的斜齿轮制造成本确实远高于直齿轮,但其他用途的齿轮,答主不是特别了解,因此不参与讨论)
1. 传动平稳性很多朋友都提到了斜齿轮能提高传动平稳性,但这个理解是片面的。
传动平稳性主要由线载荷曲线(齿轮啮合时受力变化曲线)决定:斜齿轮典型的线载荷曲线(3D)斜齿轮典型的线载荷曲线(2D)线载荷曲线受很多因素影响(齿厚、材料模量、表面硬化工艺、加工误差...),齿轮类型(直齿轮/斜齿轮)的影响并不在第一位,甚至,同规格(模数、齿数、齿厚)下,直齿轮的线载荷曲线可能比斜齿轮更平滑:直齿轮典型的线载荷曲线(3D)直齿轮典型的线荷载曲线(2D)对比直齿轮和斜齿轮的传动平稳性,就像大街上随便指着一台宝马(斜齿轮)和一台比亚迪(直齿轮)问谁更贵(传动更平稳),这是没有意义的,宝马有低端款、比亚迪有高端款,同价位下宝马也不一定比比亚迪好(同样的制造成本下,斜齿轮的线载荷曲线不一定比直齿轮更平滑)。
任何材料受力时都会形变、受力过程都是渐变的,现代的齿轮接触分析(TCA,Tooth Contact Analysis)早已打破了“斜齿轮是逐渐受力而直齿轮是瞬间受力”的说法,而国内很多教材还尚未更新。
纯粹从运动平稳性(线载荷曲线平滑度)的角度来看,直齿轮甚至可能做得比斜齿轮还好,斜齿轮在这方面的最大优势是噪音和震动控制(端面重合度高、模态分析中的谐波共振小)。
2. 强度即使不用斜齿轮,非标直齿轮依靠修形就能将齿『根』强度提高 50% 以上,详情请参考:什么是齿轮修形?齿轮强度有两个方面,其一是齿『根』强度,其二是齿『面』强度。
与直齿轮相比,斜齿轮的齿『根』强度更高,但齿『面』强度更低:齿轮副主要参数:1 模 30 齿、输入扭矩 10 Nm、输入转速 4775 RPM、无摩擦。
直齿轮的齿面应力(左)、齿根应力(右)。
斜齿轮的齿面应力(左)、齿根应力(右)。
齿轮直径、压力角相同的情况下,齿『根』强度主要由模数和厚度决定,齿『面』强度主要由厚度决定、受模数影响很小。
因此,斜齿轮适合齿厚余量较大的齿轮设计,换而言之,斜齿轮需要更大的最小齿厚、斜齿轮往往比直齿轮更厚。
由此可见,将直齿轮替换为斜齿轮,不一定能提高齿轮强度,某些情况下(齿面强度低、齿根强度高的设计),甚至会降低齿轮强度。3. 传动精度齿距误差是衡量齿轮精度的最主要指标(齿距误差和背隙有一定换算关系,商家更喜欢标背隙而不是齿距误差,因为背隙的数据更好看,就像宽带运营商喜欢标 Mbps 而不是 MB),良好设计的齿轮,齿距误差为 0 的情况下,例如 1 模 30 齿的齿轮副,很容易做到扭矩误差 < 0.5%(角度误差 < 0.05度)。但如果有 5 微米(对的,不是 0.05 mm,是 0.005 mm)的齿距误差,扭矩误差就会超过 3%,然而 5 微米已经属于国标 5 级精度了,机械手用的精密减速机通常也只有 5 级精度。齿轮精度等级划分中,相邻两个精度等级一般只差 2~5 微米(依直径、模数而不同)。如何设计(无加工误差下)扭矩误差 < 0.5% 的齿轮?详情请参考:齿轮设计中如何选择模数?齿轮传动中,误差主要有三大来源(按照误差影响从小到大排序):设计误差。标准齿轮很容易达到 3% 以上的扭矩误差,非标齿轮基本能消除因齿轮设计导致的误差(扭矩误差 < 0.1%)。摩擦力。不同工况下,齿面间的摩擦系数是不同的,例如钢-钢接触,有润滑条件下,摩擦系数在 0.5~0.15 间波动。但优秀的齿轮设计同样也能消除摩擦力导致的误差(扭矩误差 < 0.1%),详情请参考:如何计算齿轮的摩擦损耗?和滑动系数/滑动率/滑动比/比滑有关吗?齿距误差。通常情况下,设计良好的齿轮如果扭矩误差 > 3%,则其中至少 3% 都是因为齿距误差造成的...齿轮副主要参数:基于 ISO 53:1998轮廓A 齿形、1 模 45 齿、齿厚 7 mm、齿顶高系数 1.2、齿顶倒圆 0.15 mm、无变位、摩擦系数 0.1、输入扭矩 10 Nm。考虑 5 微米齿距误差,如果是直齿轮:输出扭矩的波动幅度为 0.16(9.78~9.94),波动率为 1.6%。如果是斜齿轮(20 度螺旋角):输出扭矩的波动幅度为 0.04(9.84~9.88),波动率为 0.4%。其实这对齿轮副已经设计得很好了,若没有齿距误差,直齿轮的输出扭矩波动率只有 0.3%:斜齿轮能更好地消除齿距误差对精度的影响,原理是摩擦力造成的扭矩波动更小,直齿轮啮合时是直线-直线接触,斜齿轮啮合时是曲线-曲线接触,因此摩擦力生效的原理不同。(篇幅考虑,不在此继续分析直齿轮和斜齿轮啮合的区别)相关内容推荐阅读无间隙/零背隙/消隙齿轮,有什么设计方案?齿轮设计中如何选择模数?什么是齿轮修形?如何计算齿轮的摩擦损耗?和滑动系数/滑动率/滑动比/比滑有关吗?塑料齿轮该用什么润滑油?后记最近写了很多与齿轮设计有关的回答,这篇回答是这个系列倒数第二篇,还有一篇(齿向修形)就完结了。
2. 谐波齿轮减速器设计
谐波减速机是由一个或多个圆盘和曲柄组成的。它的工作原理是,当输入转速大于输出转速时,圆盘会因惯性而继续运转。这时候,曲柄就会通过齿轮将动能传递给圆盘并改变其运动方向。由于齿轮的齿形不同,这样一来就能够实现减速的目的。
行星减速机也是由一个或多个圆盘和曲柄组成。但是它的工作原理却不同于谐波减速机。它是利用行星齿轮来实现减速的。行星齿轮就像一个小行星,围绕着一个大圆盘运转。当大圆盘旋转时,行星齿轮也会随之旋转。但由于它们之间的关系,行星齿轮的运动方向会始终保持不变。因此,利用这一原理就能够实现减速的目的。这两者之间最大的区别就是工作原理不同。而从应用上来说,行星减速机要比谐波减退机效果要好得多。
3. 谐波减速器齿形设计原理
1、齿轮啮合的方式有:
正齿轮啮合;斜齿轮啮合;行星齿轮啮合;蜗轮蜗杆啮合;齿轮齿条啮合;谐波齿轮啮合等。
2、齿轮啮合的原理:
通过点与点的接触,点与面的接触、面与面的接触、线与线的接触。
3、经过的过程是:
先点至点、先点至面再至点、先线至面再至线的过程。从而实现功能之间的相
互传送。
4、齿轮啮合的条件:
直齿圆柱齿轮的啮合条件:两齿轮的模数必须相等,两齿轮分度圆上的齿形角
必须相等。
4. 谐波减速器结构
中空谐波减速机连接电机方法:
1、减速机在安装时,要特别注意传动中心轴线的对中,对中的误差不能超过减速机所用联轴器的使用补偿量。减速机按照要求对中之后,可以获得更理想的传动效果和更长久的使用寿命。
2、减速机的输出轴上在安装传动件时,必须注意操作的柔和,禁止使用锤子等工具粗暴安装,最好是利用装配夹具和端轴的内螺纹进行安装,以螺栓拧入的力度将传动件压入减速机,这样可以保护减速机内部零件不会受到损坏
5. 谐波齿轮减速器的结构组成和特点
1、谐波齿轮减速机是齿轮减速机中的一种新型传动结构,它是利用柔性齿轮产生可控制的弹性变形波,引起刚轮与柔轮的齿间相对错齿来传递动力和运动。这种传动与一般的齿轮传递具有本质上的差别,在啮合理论、集合计算和结构设计方面具有特殊性。谐波齿轮减速器具有高精度、高承载力等优点,和普通减速器相比,由于使用的材料要少50%,其体积及重量至少减少1/3。
2、谐波减速器主要由三个基本构件组成:1.带有内齿圈的刚性齿轮(刚轮);2.带有外齿圈的柔性齿轮(柔轮);3.波发生器H。