1. 热电偶温漂
对所测量的介质没有影响
不管测量什么,最重要的是要确保测量设备自身不会影响所测量的介质。进行接触温度测量时,这一点尤为重要。选择正确的传感器尺寸和导线配置是重要的设计考虑因素,以减少"杆效应"及其他测量错误。
非常精确
将对测量介质的影响降至最低之后,如何准确地测量介质就变得至关重要。准确性涉及传感器的基本特性、测量准确性等。如果未能解决有关"杆效应"的设计问题,再准确的传感器也无济于事。
响应即时(在多数情况下)
响应时间受传感器元件质量的影响,还会受到导线的一些影响。通常传感器越小,响应速度越快。
输出易于调节
使用微处理器后可以更轻松地调节非线性输出,因此传感器输出的信号调节也更不成问题。
/ 传感器的特性分析 /
上述每种主要类型的传感器的基本操作理论都有所不同,有各自的特性:
温度范围
每种传感器的温度范围也有所不同。热电偶系列的温度范围最广,跨越多个热电偶类型。
精度
精度取决于基本的传感器特性。所有传感器类型的精度各不相同,不过铂元件和热敏电阻的精度最高。一般而言,精度越高,价格就越高。
长期稳定性
由传感器随时间的推移保持其精度的一致程度来决定。稳定性由传感器的基本物理属性决定。高温通常会降低稳定性。铂和玻璃封装的绕线式热敏电阻是最稳定的传感器。热电偶和半导体的稳定性则最差。
输出变化
传感器输出依照类型而有所变化。热敏电阻的电阻变化与温度成反比,因此具有负温度系数(NTC)。铂等基金属具有正温度系数(PTC)。热电偶的千伏输出较低,并且会随着温度的变化而变化。半导体通常可以调节,附带各种数字信号输出。
线性度
线性度定义了传感器的输出在一定的温度范围内一致变化的情况。热敏电阻呈指数级非线性,低温下的灵敏度远远高于高温下的灵敏度。随着微处理器在传感器信号调节电路中的应用越来越广泛,传感器的线性度愈发不成问题。
电压或电流
通电后,热敏电阻和铂元件都需要恒定的电压或电流。功率调节对于控制热敏电阻或铂RTD中的自动加热至关重要。电流调节对于半导体而言不太重要。热电偶会产生电压输出。
响应时间
即传感器指示温度的速度,取决于传感器元件的尺寸和质量(假定不使用预测方法)。半导体的响应速度最慢,绕线式铂元件的响应速度是第二慢的。铂薄膜、热敏电阻和热电偶提供小包装,因此带有高速选件。玻璃微珠是响应速度最快的热敏电阻配置。
错误偏差
会导致温度指示有误的电噪声是使用热电偶时的一个主要问题。在某些情况下,电阻极高的热敏电阻可能是个问题。
导线电阻可能会导致热敏电阻或RTD等电阻式设备内出现错误偏差。使用低电阻设备(例如100Ω铂元件)或低电阻热敏电阻时,这种影响会更加明显。对于铂元件,使用三线或四线导线配置来消除此问题。对于热敏电阻,通常会通过提高电阻值来消除此影响。热电偶必须使用相同材料的延长线和连接器作为导线,否则可能会引发错误。
性价比
尽管热电偶是最廉价、应用最广泛的传感器,但NTC热敏电阻的性价比却往往是最高的。
/ 传感器的优势和劣势对比 /
热电偶传感器
热电偶传感器是一种自发电式传感器,测量时不需要外加电源,直接将被测量转换成电势输出,使用十分方便。它的测温范围很广:-270℃~2500℃,并具有结构简单、制造方便、测量范围广、精度高、惯性小和输出信号便于远传等许多优点。
热电偶传感器的缺点是灵敏度比较低,容易受到环境的信号干扰,也容易受到前置放大器温漂的影响,不适合测量微小的温度变化。
热电偶传感器的灵敏度与材料的粗细无关,非常细的材料也能够做成温度传感器。由于制作热电偶的金属材料具有很好的延展性,这种细微的测温元件有极高的响应速度,可以测量快速变化的过程。
(赫斯曼接线型一体化温度传感器)
对一般的工业应用来说,为了保护感温元件避免受到腐蚀和磨损,总是装在厚厚的护套里面,外观显得笨大,对于温度的反应也迟缓得多。使用热电偶的时候,必须消除环境温度对测量带来的影响。有的把它的自由端放在不变的温度场中,有的使用冷端补偿抵消这种影响。当测量点远离仪表时,还需要使用补偿导线。
因此选择热电偶时需考虑下列因素:1、被测温度范围;2、所 需响应时间;3、连接点类型;4、热电偶或护套材料的抗化学腐蚀能力;5、抗磨损或抗振动能力;6、安装及限制要求等。
热敏电阻
热敏电阻(即“温度敏感型电阻器”)是一种高精度经济型温度测量传感器。按照温度系数分为NTC(负温度系数)和PTC(正温度系数)两种类型,NTC热敏电阻通常用于温度测量。
主要优势是:灵敏度:热敏电阻能随非常微小的温度变化而变化。精度:热敏电阻能提供很高的绝对精度和误差。成本:对于热敏电阻的高性能,它的性价比很高。坚固性:热敏电阻的构造使得它非常坚固耐用。灵活性:热敏电阻可配置为多种物理形式,包括极小的包装。密封:玻璃封装为其提供了密封的包装,从而避免因受潮而导致传感器出现故障。表面安装:提供各种尺寸和电阻容差。
(赫斯曼显示型一体化温度传感器)
热敏电阻的劣势中,通常只有自动加热是一个设计考虑因素。必须采取适当措施将感应电流限制在一个足够低的值,以便使自动加热错误降低到一个可接受的值。如果将热敏电阻暴露在高热中,将会导致永久性的损坏。
非线性问题可通过软件或电路来解决,会引发故障的潮湿问题可通过玻璃封装来解决。
电阻温度检测器(RTD)
RTD通常用铂金、铜或镍,它们的温度系数较大,随温度变化响应快,能够抵抗热疲劳,而且易于加工制造成为精密的线圈,尤其用铂金等金属制成时,RTD非常稳定,不受腐蚀或氧化的影响。RTD的测温原理是:纯金属或某些合金的电阻随温度的升高而增大,随温度降低而减小。电阻-温度变化关系最好是线性的,温度系数(温度系数的定义是单位温度引起的电阻变化)越大越好,而且要能够抵抗热疲劳,随温度变化响应灵敏。目前只有少数几种金属能够满足这样的要求。
(LLWD一体化温度传感器)
RTD还相对防止电气噪声,因此非常适合在工业环境中的温度测量,特别是在电动机、发电机及其它高压设备的周围使用。 RTD是目前最精确和最稳定的温度传感器。它的线性度优于热电偶和热敏电阻。但RTD也是响应速度较慢而且价格比较贵的温度传感器。因此,RTD最适合对精度有严格要求,而速度和价格不太关键的应用领域。
IC温度传感器
包括模拟输出和数字输出两种类型。
模拟集成温度传感器的主要特点是功能单一(仅测量温度)、测温误差小、价格低、响应速度快、传输距离远、体积小、微功耗等,适合远距离测温、控测,不需要进行非线性校准,外围电路简单。
(LL-WS62插入式温湿度传感器)
数字温度传感器是微电子技术、计算机技术和自动测试技术(ATE)的结晶。目前有多种智能温度传感器系列产品,智能温度传感器内部都包含温度传感器、A/D转换器、信号处理器、存储器(或寄存器)和接口电路。有的产品还带多路选择器、中央控制器(CPU)、随机存取存储器(RAM)和只读存储器(ROM)。智能温度传感器的特点是能输出温度数据及相关的温度控制量,适配各种微控制器(MCU);并且它是在硬件的基础上通过软件来实现测试功能的,其智能化和谐也取决于软件的开发水平。
(SBWZPK-230B防爆型温度传感器)
IC温度传感器有许多好处,包括:功耗低;可提供小型封装产品(有些尺寸小到0.8mm×0.8mm);还可在某些应用中实现低器件成本。此外,由于IC传感器在生产测试过程中都经过校准,因此没有必要进一步校准。
缺点就是温度范围非常有限, 也存在同样的自热、不坚固和需要外电源的问题。总之,温度IC提供产生正比于温度的易读读数方法,虽然便宜,但也受到配置和速度限制。数字输出IC温度传感器的响应速度慢,而模拟输出IC温度传感器的线性度很高。
2. 热电偶高温
辐射热电偶温度传感器的工作原理:
塞贝克效应 :若金属棒的两端处在不同温度时,则自由电子便会由高温区扩散至低温区,因而产生热流及电流由高温区传流向低温区的现象。
热电偶 (Thermocouple):使两接点分别接触到不同的温度,则因在不同 金属内导电子的扩散速率不同,所以,在两金属内的扩散电流大小也会不同,因此会在两金属的连结回路中会形成一微小的净电流(约10μV左右),这个实践也可自己找两条不同材料的金属线连接到一起加温观察万用表读数。
3. 普通电阻温漂
取样电阻在放电源或地上,流过的是总电流,功耗非常大,因此电阻的功率要比较大才可以,同时由于发热也比较大,普通大功率电阻温漂很小而同时精度又要很好的非常难做,能满足的价格又很高,所以很多人就使用康铜丝来做取样,温漂小,精度可控,性价比又高。
4. 低温漂电阻的温漂系数
汽车传感器的主要技术参数:
答案:(1)额定载荷:传感器的额定载荷是指在设计此传感器时,在规定技术指标范围内能够测量的最大轴向负荷。但实际使用时,一般只用额定量程的2/3~1/3。
(2)允许使用负荷(或称安全过载):传感器允许施加的最大轴向负荷。允许在一定范围内超负荷工作。一般为120%~150%。
(3)极限负荷(或称极限过载):传感器能承受的不使其丧失工作能力的最大轴向负荷。意即当工作超过此值时,传感器将会受到损坏。
(4)灵敏度: 输出增量与所加的负荷增量之比。通常每输入1V电压时额定输出的mV。本公司产品与其它公司产品配套时,其灵敏系数必须一致。
(5)非线性: 这是表征此传感器输出的电压信号与负荷之间对应关系的精确程度的参数。
(6)重复性: 重复性表征传感器在同一负荷在同样条件下反复施加时,其输出值是否能重复一致,这项特性更重要,更能反映传感器的品质。国标对重复性的误差的表述:重复性误差可与非线性同时测定。传感器的重复性误差(R)按下式计算:R=ΔθR/θn×100%。ΔθR -- 同一试验点上3次测量的实际输出信号值之间的最大差值(mv)。
(7)滞后: 滞后的通俗意思是:逐级施加负荷再依次卸下负荷时,对应每一级负荷,理想情况下应有一样的读数,但事实上下一致,这不一致的程度用滞后误差这一指标来表示。国标中是这样来计算滞后误差的:传感器的滞后误差(H)按下式计算:H=ΔθH/θn×100%。ΔθH --同一试验点上3次行程实际输出信号值的算术平均与3次上行程实际输出信号值的算术平均之间的最大差值(mv)。
(8)蠕变和蠕变恢复:要求从两个方面检验传感器的蠕变误差:其一是蠕变:在5-10秒时间无冲击地加上额定负荷,在加荷后5~10秒读数,然后在30分钟内按一定的时间间隔依次记下输出值。传感器蠕变(CP)按下式计算:CP=θ2 - θ3/θn×100%。其二是蠕变恢复:尽快去掉额定负荷(在5~10秒时间内),卸荷后在5~10秒内立即读数,然后在30分钟内按一定的时间间隔依次记下输出值。传感器的蠕变恢复(CR)按下式计算:CR=θ5 - θ6 /θn×100%。
(9)允许使用温度:规定了此传感器能适用的场合。例常温传感器一般标注为:-20℃ --- +70℃。高温传感器标注为:-40℃ --- 250℃。
(10)温度补偿范围:说明此传感器在生产时已在这样的温度范围内进行了补偿。例常温传感器一般标注为-10℃ - +55℃。
(11)零点温度影响(俗称零点温漂):表征此传感器在环境温度变化时它的零点的稳定性。一般以每10℃范围内产生的漂移为计量单位。
(12)输出灵敏系数的温度影响(俗称系数温漂):此参数表征此传感器在环境温度变化时输出灵敏度的稳定性。一般以每10℃范围内产生的漂移为计量单位。
(13)输出阻抗:本公司传感器与其它厂家传感器并联使用时,必须弄清该公司产品的输出阻抗,此值必须与其一致,否则它会直接影响电子秤的输出特征和四角误差的调试。
(14)输入阻抗:由于传感器的输入端弹模补偿电阻和灵敏系数调整电阻,所以传感器的输入电阻都大于输出电阻,但可通过并联电阻方法使其变化。要求各传感器的输入阻抗一致,若与其它厂家的传感器匹配。则应使输入阻抗与其一致,否则在调试四角误差时会增加工时,因为传感器的输入阻抗对稳压电源而言是一个负载,只有负载一样,同一稳压电源才会提供一样的电源电压。
(15)绝缘阻抗:绝缘阻抗相当于传感器桥路与地之间串了一个阻值与其相当的的电阻,绝缘电阻的大小会影响传感器的各项性能。而当绝缘阻抗低于某一个值时,电桥将无法正常工作。
(16)推荐激励电压:一般为5~10伏。因一般称重仪表内配的稳压电源为5或10伏。
(17)允许最大激励电压:为了提高输出信号,在某些情况下(例如大皮重)要求利用加大激励电压来获得较大的信号。
(18)电缆长度:它与现场布局有关,定货前必须看清楚公司产品的常规电缆长度。另外,注意环境是否有腐蚀性、是否有冲击情况、是否高温或低温。
(19)密封防护等级IP67:防浸水影响 ,以规定的压力和时间浸入水中性能不受影响 。灌胶保护的传感器可达到IP67。除可防油、防水外,还可防一般的腐蚀性气体,腐蚀性介质
5. 热电偶漂移
热电偶的常见故障主要表现有:
a.热电偶的补偿导线接反。这主要是基建时出现的问题,负责接线的人员一时的粗心造成,属人为因数。当出现热电偶
b.热电偶的补偿导线绝缘层被磨破,造成信号回路接地。这主要是因为补偿导线较硬,而且在接线盒内又未被安放平整,处理故障时多次旋拧接线盒盖碰到补偿导线而将其磨破。此类故障反映在操作员控制站上其温度示值一般偏小。
c.接线盒内接线端子接触不良。因补偿导线和热电偶的导线都比较硬,所以现场检修时紧固接线比较困难,有时候开始把导线拧紧了但过段时间随着导线的变形又松了。此类故障反映在操作员控制站上的温度示值为无显示或显示值超量程。
d.补偿电阻故障。此类故障表现为热电偶接上后温度显示值缓慢上升或下降。
e.锅炉尾部烟道测量热电偶故障率较高。停机检修时将热电偶拆下发现热电偶的头部包括护套管被烟气冲刷后严重磨损,将护套管改由耐磨钢材料制成后,才消除了此类故障隐患。
f.信号屏蔽系统DCS柜内接地不良。此类故障极容易造成电荷在信号线上积累,引起信号漂移或晃动。由于该问题故障点较难查明,通常的处理方法是解开信号线,对其进行对地放电处理。
g.温度输入信号经隔离器后故障,反映在操作员控制站上的温度值信号异常。更换隔离器后正常。
以上是检修时经常碰到的问题,但在查找这些故障时,建议先用万用表在DCS 的I/O端子柜上测量输入的电压值,这样可以迅速判断出是 地测量端问题还是DCS部分的问题,对于多点输入还可同另外几支热电偶信号进行比较。如判断不出再行解线测量其电阻值,通常热电偶的电阻值为100Ω左右。
6. 低温漂电阻
买低温漂的电阻或者采取恒温措施。