1. 半导体激光发生器原理
激光器在不同注入电流下会进入不同的模式,一定的电流范围内可能单模工作,电流变化后可能多模工作,单模的光谱集中于一个波长附近呈现单峰,多模的光谱呈现多峰。
2. 半导体激光发射原理
激光器是利用受激辐射原理使光在某些受激发的物质中放大或振荡发射的器件。
激光工作物质是指用来实现粒子数反转并产生光的受激辐射放大作用的物质体系,有时也称为激光可携式激光器增益媒质,它们可以是固体(晶体、玻璃)、气体(原子气体、离子气体、分子气体)、半导体和液体等媒质。激光工作物质的主要要求,是尽可能在其工作粒子的特定能级间实现较大程度的粒子数反转,并使这种反转在整个激光发射作用过程中尽可能有效地保持下去;为此,要求工作物质具有合适的能级结构和跃迁特性。半导体激光器是用半导体材料作为工作物质的激光器,由于物质结构上的差异,不同种类产生激光的具体过程比较特殊。常用工作物质有砷化镓(GaAs)、硫化镉(CdS)、磷化铟(InP)、硫化锌(ZnS)等。激励方式有电注入、电子束激励和光泵浦三种形式。半导体激光器件,可分为同质结、单异质结、双异质结等几种。同质结激光器和单异质结激光器室温时多为脉冲器件,而双异质结激光器室温时可实现连续工作。半导体激光器的分类 (1)异质结构激光器 (2)条形结构激光器 (3)GaAIAs/GaAs激光器 (4)InGaAsP/InP激光器 (5)可见光激光器 (6)远红外激光器 (7)动态单模激光器 (8)分布反馈激光器 (9)量子阱激光器 (10)表面发射激光器 (11)微腔激光器
3. 半导体激光发生器原理图
激光电视内部构造
理论来说,激光电视应该是由激光发射器、调制器、偏转器以及屏幕构百成。其可以将视频信号分离成RGB三原色的图像信号,再经过处理分别控制RGB三原色半导体激光发生器,发度射出相应强度的激光,并经过调制输出和信号同步控制后,通过投影透镜的光束扫描到屏幕上形成图像。这个原理与我们常见的RGB-LED光源投影类似,比如极米H1S、极米Z5等等。
4. 半导体激光器的原理
光纤激光器的工作原理如下:由泵浦源发出的泵浦光通过一面反射镜耦合进入增益介质中,由于增益介质为掺稀土元素光纤,因此泵浦光被吸收,吸收了光子能量的稀土离子发生能级跃迁并实现粒子数反转,反转后的粒子经过谐振腔,由激发态跃迁回基态,释放能量,并形成稳定的激光输出。光纤激光器的工作原理主要基于光纤激光器的特殊结构。激光器是由工作物质、泵浦源和谐振腔三部分组成,具体作用如下:
1、增益光纤为产生光子的增益介质。
2、抽运光的作用是作为外部能量使增益介质达到粒子数反转,即泵浦源。
3、光学谐振腔由两个反射镜组成,作用是使光子得到反馈并在工作介质中得到放大。扩展资料:光纤激光器的特点:1、光束质量好。光纤的波导结构决定了光纤激光器易于获得单横模输出,且受外界因素影响很小,能够实现高亮度的激光输出。2、高效率。光纤激光器通过选择发射波长和掺杂稀土元素吸收特性相匹配的半导体激光器为泵浦源,可以实现很高的光一光转化效率。对于掺镱的高功率光纤激光器,一般选择915纳米或975纳米的半导体激光器,荧光寿命较长,能够有效储存能量以实现高功率运作。3、散热特性好。光纤激光器是采用细长的掺杂稀土元素光纤作为激光增益介质的,其表面积和体积比非常大,约为固体块状激光器的1000倍,在散热能力方面具有天然优势。中低功率情况下无需对光纤进行特殊冷却,高功率情况下采用水冷散热,也可以有效避免固体激光器中常见的由于热效应引起的光束质量下降及效率下降。
4、结构紧凑,可靠性高。由于光纤激光器采用细小而柔软的光纤作为激光增益介质,有利于压缩体积、节约成本。泵浦源也是采用体积小、易于模块化的半导体激光器,商业化产品一般可带尾纤输出,结合光纤布拉格光栅等光纤化的器件,只要将这些器件相互熔接即可实现全光纤化,对环境扰动免疫能力高,具有很高的稳定性,可节省维护时间和费用。
5. 半导体激光器产生激光输出的工作原理
半导体激光器是以一定的半导体材料做工作物质而产生受激发射作用的器件。.其工作原理是通过一定的激励方式,在半导体物质的能带(导带与价带)之间,或者半导体物质的能带与杂质(受主或施主)能级之间,实现非平衡载流子的粒子数反转,当处于粒子数反转状态的大量电子与空穴复合时,便产生受激发射作用。武汉三工生产的半导体激光器,采用半导体激光二极管作为泵浦源,端面泵浦光纤耦合,输出功率高,使用寿命长,便于维护,内置散热片风冷保证激光稳定输出,可长时间连续工作。