1. 热电堆式热流传感器
可用热流计、热辐射强度计、对流热流计等进行测量。热流计是冷热结点分别布置在电绝缘薄片两个侧面上的热电堆。电绝缘薄片沿物体等温线布置时,通过此薄片的比热流q与热电堆所产生的电动势E成正比,即:q=cE。式中c是热流计的系数。
2. 热电堆阵列传感器
(1)按红外辐射与探测器的作用方式,主要分为光子型探测器和热探测器。光子型探测器包括光导型、光伏型、量子阱、超晶格等不同光子效应的探测器。热探测器包括热释电、热电堆、微测辐射热计等探测器。 (2)按照工作温度,可以分为制冷型探测器和非制冷型探测器。一般的光子型探测器都需要工作在低温,因此都是制冷型。即使如1-3um波段的
PbS探测器可以工作在室温,但降低其工作温度能够显著改善其性能。而热探测器一般工作在室温范围,降低工作温度对其性能改进不明显。 (3)按照敏感元的数量,可以分为单元探测器、线列探测器、以及焦平面探测器。单元探测器、线列探测器如果用于成像则必须配备光机扫描机制,而焦平面探测器可以实现凝视成像。 (4)按照响应波长,可以分为短波红外探测器(1-2.5um)、中波红外探测器(3-5um)、以及长波红外探测器(8-14um),主要是针对三个大气窗口而形成的体制。
3. 高温热流传感器
电子传感器的运用就是讲外界的信号收入进来然后转化为电信号进行处理。汽车就有一个很基本的器件就是电子传感器,比如它会检测到水箱的温度、测速、车门有没有关好等
温度传感器 流量传感器 压力传感器 位移传感器 密度传感器 湿度传感器 光学传感器 气体传感器 热流传感器 位置传感器 尺度传感器 离子传感器 称重传感器 速度传感器 力传感器 声传感器 电传感器 传感器配件 其他传感器
4. 热电堆型红外传感器
我可以帮你回答这个问题,希望能帮助到你,并且有视频回答。
红外体温计又称为红外测温仪,可以在1秒内准确地测量出人体的温度。使用时只需将探头对准额头,按下按钮即可。
智能红外体温计技术原理是一切温度高于零度的物体都在不停地向周围空间发射红外能量。其辐射特性、辐射能量的大小、波长分布等都与物体表面温度密切相关。反过来,通过对物体自身辐射的红外能量的测量,便能准确地测定它的表面温度,这就是红外辐射测温的机理。
智能红外体温枪规格参数:
1、测温范围:前额:32-43表面温度0-60
2、测量精度:±0、3C
3、测量时间:≤1秒
4、测量距离:1-10CM
5、测量方法:红外线测量
6、发射率:0、95
7、红外波长:5-14um
8、按键:开关机/记忆,start
9、功能:高温报警,记忆温度10次
10、组成:由热电堆式红外传感器,微处理存储器,液晶显示屏及外売组成
11、适用范围:通过测量额头热辐射来显示被测对象的。
5. 热电堆传感器应用电路
PD”是“Power Density”的缩写,意思是“功率密度”。
常用到激光能量计,用来探测重复脉冲激光的单发能量和单脉冲激光的能量。Ophir 的热电堆型激光功率计通过热电堆结构将光能转换成热量,再转换为电信号输出,通过校准来精确测量激光功率的大小。激光功率计一般由探头和显示设备组成,激光功率计探头按照不同的原理和材料分为热电堆型(thermal)、光电二极管型(PD:Photodiode)、以及包含两种传感器的综合探头(RP),激光能量计则有热释电传感器(PE:Pyroelectric)和热电堆(Thermal)传感器探头。
6. 热电堆传感器工作原理
温度传感器 temperature transducer
定义:利用物质各种物理性质随温度变化的规律把温度转换为可用输出信号。温度传感器是温度测量仪表的核心部分,品种繁多。按测量方式可分为接触式和非接触式两大类,按照传感器材料及电子元件特性分为热电阻和热电偶两类。现代的温度传感器外形非常得小,这样更加让它广泛应用在生产实践的各个领域中,也为我们的生活提供了无数的便利和功能。
分类:温度传感器有四种主要类型:热电偶、热敏电阻、电阻温度检测器(RTD)和IC温度传感器。IC温度传感器又包括模拟输出和数字输出两种类型。
工作原理:
1、温度传感器工作原理--热电偶
两种不同导体或半导体的组合称为热电偶。热电偶的热电势EAB(T,T0)是由接触电势和温差电势合成的。接触电势是指两种不同的导体或半导体在接触处产生的电势,此电势与两种导体或半导体的性质及在接触点的温度有关。
当有两种不同的导体和半导体A和B组成一个回路,其两端相互连接时,只要两结点处的温度不同,一端温度为T,称为工作端或热端,另一端温度为TO,称为自由端,则回路中就有电流产生,即回路中存在的电动势称为热电动势。这种由于温度不同而产生电动势的现象称为塞贝克效应。
2、温度传感器工作原理--红外温度传感器
在自然界中,当物体的温度高于绝对零度时,由于它内部热运动的存在,就会不断地向四周辐射电磁波,其中就包含了波段位于0.75~100μm 的红外线,红外温度传感器就是利用这一原理制作而成的。
SMTIR9901/02是一款现在市场上应用比较广的红外传感器,它是基于热电堆的硅基红外传感器。大量的热电偶堆集在底层的硅基上,底层上的高温接点和低温接点通过一层极薄的薄膜隔离它们的热量,高温接点上面的黑色吸收层将入射的放射线转化为热能,由热电效应可知,输出电压与放射线是成比例的,通常热电堆是使用BiSb和NiCr作为热电偶。
3、温度传感器工作原理--模拟温度传感器
AD590是一款电流输出型温度传感器,供电电压范围为3~30V,输出电流223μA~423μA,灵敏度为1μA/℃。当在电路中串接采样电阻R时,R两端的电压可作为输出电压。R的阻值不能取得太大,以保证AD590两端电压不低于3V。AD590输出电流信号传输距离可达到1km以上。作为一种高阻电流源,最高可达20MΩ,所以它不必考虑选择开关或CMOS多路转换器所引入的附加电阻造成的误差。适用于多点温度测量和远距离温度测量的控制。
.4、温度传感器工作原理--数字式温度传感器
它采用硅工艺生产的数字式温度传感器,其采用PTAT结构,这种半导体结构具有精确的,与温度相关的良好输出特性。PTAT的输出通过占空比比较器调制成数字信号,占空比与温度的关系如下式:DC=0.32+0.0047*t,t为摄氏度。输出数字信号故与微处理器MCU兼容,通过处理器的高频采样可算出输出电压方波信号的占空比,即可得到温度。该款温度传感器因其特殊工艺,分辨率优于0.005K。测量温度范围-45到130℃,故广泛被用于高精度场合。
7. 热电堆红外传感器生产厂家
由于传感器设计简单、坚固、高效,采用了超材料,可省去NDIR气体传感器中的一个主要成本因素:介质滤波器,同时,还可减小设备的尺寸以及能量消耗。基于体积小、成本低、能源消耗低这些优良特性,这种新型光学气体传感器,是理想的新型物联网和智能家居设备,可用于探测和响应环境的变化,未来还可用于医学诊断和监测。
传统NDIR传感器的工作原理是,将红外光通过室内空气照射到探测器上。除能被特定气体分子吸收的波长外,探测器前方的光学滤光片可滤除所有光线,因此,探测器所探测到的光的数量就指示了该气体在空气中的浓度。虽然大多数NDIR传感器都用于测量二氧化碳,但不同的滤光片可用于测量各种其他气体。
近几年,工程师们用微电子机械系统(MEMS)技术取代了传统的红外光源和探测器,MEMS是连接机电信号的微型元件。在此次研究中,研究人员将超材料集成至MEMS平台上,进一步缩小了NDIR传感器的尺寸,并显著提高了其光程长度。
该设计的关键之处在于,其采用了一种称为超材料完美吸收器(MPA)的材料,而该MPA由铜和氧化铝组成的复杂分层结构制成。由于具备分层结构,MPA可吸收来自任何角度的光线。为了利用该特性,研究人员设计了一个多反射单元,能够通过多次反射红外光来“折叠”红外光,从而可以在一个尺寸为5.7×5.7×4.5毫米的空间内压缩一条约为50毫米长的光吸收路径。
在传统NDIR传感器中,光线需要穿过一个几厘米长的腔体,才能在浓度非常低的情况下探测到气体,但是,新设计优化了光的反射,能在一个半厘米长的腔体中就实现同样的灵敏度。
超材料能有效过滤和吸收光线,因而新设计与现有的传感器设计相比,更加简单、坚固。其主要部件为超材料热发射器、吸收单元以及超材料热电堆探测器。一个微控制器会定时将加热板加热,使超材料热发射器产生红外光。光穿过吸收单元,被热电堆探测到,然后微控制器从热电堆中收集电子信号,并将数据传输至计算机。
该设计的主要能源需求来自加热热发射器所需的能量,由于热发射器中采用的超材料具备高效率,该系统的工作温度与之前的设计相比,将低得多,因此每次进行测量时所需的能量也更少。
研究人员通过测量受控大气中不同浓度的二氧化碳来测试该设备的灵敏度,证明该系统可以探测到二氧化碳浓度,而且限噪分辨率为23.3 ppm,与商用系统相当。但是,该传感器每次进行测量时只需要58.6焦耳的能量,与商用低功耗NDIR二氧化碳热传感器相比,大约减少了5倍。