气动机械手plc编程(基于plc的气动机械臂)

海潮机械 2023-01-03 19:41 编辑:admin 220阅读

1. 基于plc的气动机械臂

淘宝清废堆码机的作用:

1.自动堆码整齐输出。

2.计数部主电机变频调速,速度可调,开机稳定可靠。

3.利用皮带输送纸箱, 堆积整齐, 速度0-200m/min。

4.计数和推出采用气动方式, PLC电控, 动作可靠, 准确快速。

5.采用PLC编程控制器和触摸屏数字控制, 操作简单, 动作可靠不停机输入数据, 自动计数。

6.输出部采用底部输送带和上部压紧皮带同步压紧方式,使成品纸箱粘牢固并整齐输出。

2. plc控制机械手臂论文

S7-200的发送脉冲不是很好用,不过就你这个功能而言还是很好实现的!首先制作一个原点回归程序,每次开机都自我判断一次,校准机械原点!然后设置好细分,发送定量脉冲即可!希望能帮到你!可以设置多个子程序来实现。

3. 机械手臂plc编程设计

PLC控制机械手动作是人所共知的了,但要控制挖掘机各个臂的动作的话难度会比较大,主要是各个臂的动作幅度需要随时调整,而PLC只能通过间接控制液压阀动作才能控制机械手的动作,那么动作幅度会很难掌握,这就就好比你洗多少衣服需要放多少洗衣粉一样需要人来判别,当然,洗衣机还可以采用模糊控制来实现,而挖掘机就不好判别了,挖多深?

从哪个角度去挖?

手臂伸展长度等都需要人来判别,所以挖掘机用PLC来控制手臂动作只能是协助性的做一些准备动作还差不多,单纯想依靠PLC来控制机械手所有动作目前还是不能实现的。

如果配合数控系统进行控制的话从理论上来讲是可以实现的,但机电转换工作太庞大,成本会增加很多,性价比不高啊!

4. plc机械臂编程

机械手臂传感器工作原理:

机械手臂一般都是直线气缸或旋转气缸或气爪控制的,其传感器就是气缸上所带的接近开关。气缸两端内部有磁环,气缸两端外部安装有接近开关。气缸杆伸出或缩回到位时,接近开关有感应,就把信号传到PLC或CNC里。气缸传感器型号,一般由气缸生产厂家随气缸一起提供(如SMC的气缸就是),当然还有电感式,电容式。接近开关在机械手里应用就是位置检测。

5. plc控制机械臂

三菱系统M80 plc警报A0002 3.刀库刀臂位置错误表现为网页无法显示,原因和解决方法如下七、系统文件的问题

当与IE有关的系统文件被更换或损坏时,会影响到IE正常的使用,这时可使用SFC命令修复一下,WIN98系统可在“运行”中执行SFC,然后执行扫描;WIN2000/XP/2003则在“运行”中执行sfc /scannow尝试修复。

6. PLC机械臂

机器人控制器作为工业机器人最为核心的零部件之一,对机器人的性能起着决定性的影响,在一定程度上影响着机器人的发展。

常用的机器人控制器有:

1. PLC控制器

2.单片机控制器

3.电脑主机CPU控制器

机器人控制系统的基本功能有:

  1.控制机械臂末端执行器的运动位置(即控制末端执行器经过的点和移动路径);

  2.控制机械臂的运动姿态(即控制相邻两个活动构件的相对位置);

  3.控制运动速度(即控制末端执行器运动位置随时间变化的规律);

  4.控制运动加速度(即控制末端执行器在运动过程中的速度变化);

  5.控制机械臂中各动力关节的输出转矩:(即控制对操作对象施加的作用力);

  6.具备操作方便的人机交互功能,机器人通过记忆和再现来完成规定的任务;

  7.使机器人对外部环境有检测和感觉功能。工业机器人配备视觉、力觉、触觉等传感器进行测量、识别,判断作业条件的变化。

机器人的控制系统,就相当于人体的大脑,是机器人的核心组成部分。

关于机器人的控制系统有哪些分类呢?

机器人控制系统按其控制方式可分集中控制系统、主从控制系统及分散控制系统,下面为大家详细讲讲这些系统。

  关于机器人控制系统的分类:

1、集中控制系统:

用一台计算机实现全部控制功能,结构简单,成本低,但实时性差,难以扩展,在早期的机器人中常采用这种结构。

基于PC的集中控制系统里,充分利用了PC资源开放性的特点,可以实现很好的开放性:多种控制卡,传感器设备等都可以通过标准PCI插槽或通过标准串口、并口集成到控制系统中。集中式控制系统的优点是:硬件成本较低,便于信息的采集和分析,易于实现系统的最优控制,整体性与协调性较好,基于PC的系统硬件扩展较为方便。

2、主从控制系统:

采用主、从两级处理器实现系统的全部控制功能。

主CPU实现管理、坐标变换、轨迹生成和系统自诊断等:从CPU实现所有关节的动作控制。主从控制方式系统实时性较好,适于高精度、高速度控制,但其系统扩展性较差,维修困难。

3、分散控制系统:

按系统的性质和方式将系统控制分成几个模块,每一个模块各有不同的控制任务和控制策略,各模式之间可以是主从关系,也可以是平等关系。

这种方式实时性好,易于实现高速、高精度控制,易于扩展,可实现智能控制,是目前流行的方式,系统灵活性好,控制系统的危险性降低,采用多处理器的分散控制,有利于系统功能的并行执行,提高系统的处理效率,缩短响应时间。

7. 基于plc的气动机械手

机械手主要由执行机构、驱动机构和控制系统三大部分组成。手部是用来抓持工件(或工具)的部件,根据被抓持物件的形状、尺寸、重量、材料和作业要求而有多种结构形式,如夹持型、托持型和吸附型等。运动机构,使手部完成各种转动(摆动)、移动或复合运动来实现规定的动作,改变被抓持物件的位置和姿势。运动机构的升降、伸缩、旋转等独立运动方式,称为机械手的自由度。

为了抓取空间中任意位置和方位的物体,需有6个自由度。自由度是机械手设计的关键参数。自由度越多,机械手的灵活性越大,通用性越广,其结构也越复杂。一般专用机械手有2~3个自由度。控制系统是通过对机械手每个自由度的电机的控制,来完成特定动作。同时接收传感器反馈的信息,形成稳定的闭环控制。控制系统的核心通常是由单片机或dsp等微控制芯片构成,通过对其编程实现所要功能。

一、执行机构

机械手的执行机构分为手部、手臂、躯干;

1、手部

手部安装在手臂的前端。手臂的内孔中装有传动轴,可把运用传给手腕,以转动、伸曲手腕、开闭手指。

机械手手部的构造系模仿人的手指,分为无关节、固定关节和自由关节3种。手指的数量又可分为二指、三指、四指等,其中以二指用的最多。可根据夹持对象的形状和大小配备多种形状和大小的夹头以适应操作的需要。所谓没有手指的手部,一般都是指真空吸盘或磁性吸盘。

2、手臂

手臂的作用是引导手指准确地抓住工件,并运送到所需的位置上。为了使机械手能够正确地工作,手臂的3个自由度都要精确地定位。

3、躯干躯干是安装手臂、动力源和各种执行机构的支架。

二、驱动机构

机械手所用的驱动机构主要有4种:液压驱动、气压驱动、电气驱动和机械驱动。其中以液压驱动、气压驱动用得最多。

1、液压驱动式

液压驱动式机械手通常由液动机(各种油缸、油马达)、伺服阀、油泵、油箱等组成驱动系统,由驱动机械手执行机构进行工作。通常它的具有很大的抓举能力(高达几百千克以上),其特点是结构紧凑、动作平稳、耐冲击、耐震动、防爆性好,但液压元件要求有较高的制造精度和密封性能,否则漏油将污染环境。

2、气压驱动式

其驱动系统通常由气缸、气阀、气罐和空压机组成,其特点是气源方便、动作迅速、结构简单、造价较低、维修方便。但难以进行速度控制,气压不可太高,故抓举能力较低。

3、电气驱动式电力驱动是机械手使用得最多的一种驱动方式。其特点是电源方便,响应快,驱动力较大(关节型的持重已达400kg),信号检测、传动、处理方便,并可采用多种灵活的控制方案。驱动电机一般采用步进电机,直流伺服电机(AC)为主要的驱动方式。由于电机速度高,通常须采用减速机构(如谐波传动、RV摆线针轮传动、齿轮传动、螺旋传动和多杆机构等)。有些机械手已开始采用无减速机构的大转矩、低转速电机进行直接驱动(DD)这既可使机构简化,又可提高控制精度。

4、机械驱动式

机械驱动只用于动作固定的场合。一般用凸轮连杆机构来实现规定的动作。其特点是动作确实可靠,工作速度高,成本低,但不易于调整。其他还有采用混合驱动,即液-气或电-液混合驱动。

三、控制系统

机械手控制的要素包括工作顺序、到达位置、动作时间、运动速度、加减速度等。机械手的控制分为点位控制和连续轨迹控制两种。

控制系统可根据动作的要求,设计采用数字顺序控制。它首先要编制程序加以存储,然后再根据规定的程序,控制机械手进行工作程序的存储方式有分离存储和集中存储两种。分离存储是将各种控制因素的信息分别存储于两种以上的存储装置中,如顺序信息存储于插销板、凸轮转鼓、穿孔带内;位置信息存储于时间继电器、定速回转鼓等;集中存储是将各种控制因素的信息全部存储于一种存储装置内,如磁带、磁鼓等。这种方式使用于顺序、位置、时间、速度等必须同时控制的场合,即连续控制的情况下使用。

其中插销板使用于需要迅速改变程序的场合。换一种程序只需抽换一种插销板限可,而同一插件又可以反复使用;穿孔带容纳的程序长度可不受限制,但如果发生错误时就要全部更换;穿孔卡的信息容量有限,但便于更换、保存,可重复使用;磁蕊和磁鼓仅适用于存储容量较大的场合。至于选择哪一种控制元件,则根据动作的复杂程序和精确程序来确定。对动作复杂的机械手,采用求教再现型控制系统。更复杂的机械手采用数字控制系统、小型计算机或微处理机控制的系统。控制系统以插销板用的最多,其次是凸轮转鼓。它装有许多凸轮,每一个凸轮分配给一个运动轴,转鼓运动一周便完成一个循环。