1. 液压推动器结构
工作原理:
1、中间位置时(方向盘不转动时)。油泵来的油经转向器内部回油箱。
2、动力转向时,油泵来的油经随动阀进入摆线针轮啮合付(计量马达),推动转子跟随方向盘转动,视方向盘转向转角的大小、定向、定量的将液压油压入油缸的左腔或右腔,推动导向轮实现动力转向。油缸另一侧的油经随动阀回油箱。
3、人力转向,当发动机熄火时,靠人力操作方向盘,通过转向器内的阀芯、拨销、联动轴驱动计量马达的转子转动,计量马达将液压油压入油缸,推动导向轮实现人力转向。
油缸两腔的容积差可通过回油口由油箱补给。由于转向器用于重型速度较低的车辆,为防止方向盘打手,结构型式设计成开心无反应结构,作用在导向轮上的外力传不到方向盘上,驾驶员无道路感觉。
2. 电力液压推动器内部结构图
YT1-45Z/5 电力液压推动器 Y代表液压; T代表推动器; 1是设计序列号; 45是推力450NM(45公斤) Z代表是电力液压制动器上用的电力液压推动器(没有Z的话是带负荷簧的)
5代表电力液压推动器的行程,50MM YT1-45Z/5和YT1-45Z/6 只是行程上有了10毫米的差别,很少,可以代替使用的,在制动器上稍微调节就可以了
3. 液压推动器结构图解
液压阀块漏油,先检查是哪里漏出来的油,我是与叠加阀处漏油,检查一下是否是因为阀的密封件失效漏油,如果是更换。密封件就可以了。如果是由于罚款的规定,一般是由于包括的材料有问题或者外界受力引起的,这时候就要修理了。
4. 液压推动器结构图
1.把制动力矩的弹簧调松。
2.手动提起推动器三角板并调节上部调节螺杆,使抱闸打开间隙为1.5mm(闸皮与制动轮),调节抱闸架下部限位螺丝使抱闸打开间隙两边平均分配。
3.调节力矩弹簧达到要求的刻度。
4.拧紧所有的锁紧螺母。(报闸调完)5.当闸皮磨损到要求时更换闸皮,并按上面步骤调整。在闸皮磨损过程中,因为闸皮的磨损推动器三角板下降,当推动器光杆下降接近补偿极限标记时,要及时调整抱闸间隙。
5. 液压推动器内部结构
全液压转向器主要由随动转阀和计量马达组成。随动转阀包括阀芯 7 、阀套 6、 阀体 3 ,控制油流方向。由定子 13 ,转子9,实现计量马达的功能,以保证出口油量与方向盘的转角成正比。转动方向盘,当有油通过计量马达时,通过转子 9 ,联动轴 8 ,拔销 5 ,带动阀套 6 与阀芯 7 同向转动,将油送到流量放大阀的先导油进出口,控制流量放大阀的主阀芯动作,油量得到放大.从而控制转向。
随动阀处于中间位置(即方向盘不动)时,先导泵排出的油经控制油路溢流阀回油箱
转动方向盘时,先导泵来油经随动转阀到计量马达。推动转子随方向盘同步转动,将先导油送到流量放大阀阀杆一端.使其阀杆动作,实现转向。阀杆另一端的油经随动转阀回油箱,当方向盘转得较快时,通过计量马达到流量放大阀阀杆一端的先导油多,阀杆位移量增大,转向则较快。
方向盘与阀芯连接在一起,当方向盘转动时,阀芯转过一个小角度,直到弹簧片被压,阀套才跟着旋转,这时阀芯与阀套分开一个角度,将油路接通,与此同时,与阀套相连的联动轴一起转动,带动定子内转子的旋转把与方向盘转角成一定比例的先导油送至流量放大阀。方向盘停止转动弹簧片使得阀套、阀芯回到中间位置,将油路关闭。
6. 电力液压推动器结构原理图
液压系统的发热按发热原因可分为两大类:一类是由于设计的原因造成的发热;一类是由于液压元件故障或使用不当的原因,造成的发热。显然,发热原因不同,其排除方法也不一样。
1设计不合理,造成液压系统的发热及其排除
(1)液压油的油号选用不当,可能造成液压系统的发热所选液压油在油温较低时,系统正常工作,但系统工作一段时间后,油温升高,液压油黏度下降,造成系统内部泄漏增加,伴随泄漏的增加更促使了油温的上升,形成油温的恶性循环。解决的方法是:根据系统的负载及正常工作温度要求,选择合适黏度的液压油。
(2)油箱设计不合理,使液压系统散热效果降低系统发热油箱的主要功能是储存液压油,但它同时兼有散热、沉淀杂质、分离水分的作用。油箱设计不合理,主要表现在两个方面:一是油箱体积设计过小,由于混凝土泵属移动型液压设备,油箱体积一般为液压泵流量的一倍左右,
因此,油箱散热面积及储油量均较小;二是有些油箱在结构上设计不合理,吸油管口和回油管口较近,中间又不设隔板,从而缩短了油液在油箱内的冷却循环及沉淀杂质的路径,甚至造成大部分回油直接进入吸油管,使油箱的散热效果降低,油温升高。解决方法是:适当增加油箱体积,使油箱体积为(1125~115)Q,并尽量加大吸油管口与回油管口之间的距离,吸、回油管之间应设置隔板,以确保油箱应有的散热功率。
(3)散热流量较小,冷却器安装位置不合理,使系统散热能力降低混凝土泵的冷却方式有风冷和水冷两种,用户可根据实际情况选用,但一般采用风冷较多。有些混凝土泵因考虑冷却器的承压要求,将冷却器设置在搅拌系统的回油路上,仅对搅拌系统的油液进行冷却,因搅拌系统流量较小,因此整个系统冷却效果差,使系统发热。
解决的方法:一是可采用独立冷却回路,提高冷却效果。二是将冷却器设置在系统总回油路上,以加大散热流量,提高冷却效果,但此时应注意两个问题,第一个问题是冷却风扇的转速,冷却风扇的转速不能过低,否则将降低冷却效果,可采用电动机驱动风扇,或在总回油路上设置一低压驱动马达,使马达转速与散热流量相匹配,同时还可解决主回路压力冲击对冷却器承压能力的影响;第二个问题是如采用电动机驱动风扇,主系统的压力冲击对冷却器承压能力的影响,此时,可在回油路上与冷却器并装一个低压溢流保护阀或单向阀对冷却器进行最高承压保护。
(4)液压元件选型不当,造成系统发热混凝土泵液压系统一般为高压大流量系统,如果系统中的液压元件,主要是换向阀、溢流阀和顺序阀规格选用不合理,不能满足大流量要求,从而在使用中,使阀口液流流速过高,造成较大的压力损失而使油温升高,
因此,液压系统设计中在进行液压元件选型设计时,一定要根据液压元件所承受的最高工作压力、所通过的最大流量以及所要求的压力和流量调整范围进行元件的选择,尽量减少阀口压力损失,从而减少由于液压元件规格选用不合理而造成的系统发热。
(5)管路设计、安装不合理,造成压力损耗大,使压力能转换成热能在液压系统设计中,管路的设计与安装不能忽视,各管路管径应严格按其工作压力和通过流量进行设计,避免管径设计过小,造成流速过高,沿程压力损失过大,引起发热。同时,还应注意管路的安装,既要做到外观整齐,又要避免管路集聚及管路的急转弯,影响管路的自然散热或造成局部压力损失过大引起发热。