线性霍尔传感器电路(线性霍尔传感器接近开关)

海潮机械 2023-01-05 18:07 编辑:admin 233阅读

1. 线性霍尔传感器接近开关

接近开关就是利用位移传感器对接近物体的敏感特性达到控制开关通或断的目的,通俗的讲就是当物体靠近接近开关时,开关能够发生动作,接近开关按其原理的不同可以分为很多种,有一种就是霍尔式接近开关,它的原理就是当磁性物件移近霍尔开关时,开关检测面上的霍尔元件因产生霍尔效应而使开关内部电路状态发生变化,由此识别附近有磁性物体存在,进而控制开关的通或断。但是必须是磁性物体才行。而霍尔传感器是根据霍尔效应制作的一种磁场传感器。可以分为线性型霍尔传感器和开关型霍尔传感器两种,线性的输出是模拟量(电压,电流),开关型的输出是数字量。所以可以说霍尔式接近开关与开关型霍尔传感器在某种程度上可以说能相互替换,但是霍尔传感器与接近开关应该是两种不同的概念。

2. 开关式霍尔传感器

霍尔传感器分为线型霍尔传感器和开关型霍尔传感器两种。

(一)开关型霍尔传感器由稳压器、霍尔元件、差分放大器,斯密特触发器和输出级组成,它输出数字量。开关型霍尔传感器还有一种特殊的形式,称为锁键型霍尔传感器。

(二)线性型霍尔传感器由霍尔元件、线性放大器和射极跟随器组成,它输出模拟量。线性霍尔传感器又可分为开环式和闭环式。闭环式霍尔传感器又称零磁通霍尔传感器。线性霍尔传感器主要用于交直流电流和电压测量。.

3. 霍尔传感器的线性范围

霍尔元件测量电流,是用霍尔元件检测通电导线周围的磁场来实现的。霍尔效应大电流计的特点是:结构简单、成本低廉、准确度高、测量时不需要断开回路。下面,就来介绍几种用霍尔元件测量大电流的方法。

  1.导线旁测法

  此法最简单,将霍尔元件放在通电导线的附近,给霍尔元件通一恒定的电流,用霍尔元件测量被测导线的磁场,就可以从霍尔元件输出的电压中确定被测电流的值。

  这种方法测量大电流的特点是结构简单、操作方便。但测量精度较差,受外界干扰也大,所以只适用于要求精度不高的场合。

  2.导线贯穿磁芯法

  如果用铁磁材料做成磁导体的铁芯,使被测导线贯穿它的中央,将霍尔传感器放在磁导体的气隙中,这样,可以通过环形铁芯集中磁力线。当导线中有电流流过时,使导磁体铁芯磁化,在环形气隙中就形成磁场,导线中的电流越大,气隙处的磁感应强度就越大,霍尔元件输出的电压VH就越大。于是可以通过电压VH检测到导线中的电流大小。这种方法的特点是检测精度较高。

  在实际应用中,通常把导磁铁芯做成钳形,成非闭合磁路的形式。

  3.磁芯绕线法

  以某款霍尔线性传感器为例,这种检测方法的电路由标准环形导磁铁芯和霍尔线性传感器组合而成。被测通电导线绕在导磁铁芯上,每1匝/A在气隙处可产生0.0056T的磁感应强度。如果测量范围是0~20A,则导线绕制9匝,使可产生约0. 1T的磁感应强度,霍尔传感器会有1.4V的电压输出,以此可以检测出通电导线电流的大小。

4. 开关型霍尔传感器应用

霍尔传感器是根据霍尔效应制作的一种磁场传感器。霍尔效应是磁电效应的一种,这一现象是霍尔(A.H.Hall,1855—1938)于1879年在研究金属的导电机构时发现的。后来发现半导体、导电流体等也有这种效应,而半导体的霍尔效应比金属强得多,利用这现象制成的各种霍尔元件,广泛地应用于工业自动化技术、检测技术及信息处理等方面。霍尔效应是研究半导体材料性能的基本方法。通过霍尔效应实验测定的霍尔系数,能够判断半导体材料的导电类型、载流子浓度及载流子迁移率等重要参数。

霍尔传感器分为线型霍尔传感器和开关型霍尔传感器两种。

5. 线性集成霍尔传感器与开关型集成霍尔传感器

霍尔开关与普通接近开关的区别:

一、定义不同

当一块通有电流的金属或半导体薄片垂直地放在磁场中时,薄片的两端就会产生电位差,以这种磁敏元件来进行控制的开关为霍尔开关。

普通接近开关是一种无需与运动部件进行机械直接接触而可以操作的位置开关,当物体接近开关的感应面到动作距离时,不需要机械接触及施加任何压力即可使开关动作,从而驱动直流电器或给计算机(plc)装置提供控制指令。

二、原理不同

霍尔开关的原理是霍尔效应,即通电金属或半导体薄片通电产生电位差。

普通接近开关的原理利用位移传感器对接近物体的敏感特性达到控制开关通或断的目的。

三、特点不同

霍尔开关具有无触点、低功耗、长使用寿命、响应频率高等特点,内部采用环氧树脂封灌成一体化,所以能在各类恶劣环境下可靠的工作。比普通接近开关更加灵敏。

普通接近开关具有传感性能,且动作可靠,性能稳定,频率响应快,抗干扰能力强等、并具有防水、防震、耐腐蚀等特点。但是在灵敏度和使用寿命方面不如霍尔开关。

四、检测对象不同

霍尔开关接近开关的检测对象必须是磁性物体。

普通接近开关的检测对象不限于导体,可以绝缘的液体或粉状物等。

6. 线性型霍尔传感器和开关型霍尔传感器有什么区别

1、单极霍尔效应开关(数字输出)

单极霍尔效应开关具有磁性工作阈值 (Bop)。如果霍尔单元承受的磁通密度大于工作阈值,那么输出晶体管将开启;当磁通密度降至低于工作阈值 (Brp) 时,晶体管会关闭。滞后 (Bhys) 是两个阈值 (Bop-Brp) 之间的差额。即使存在外部机械振动及电气噪音,此内置滞后页可实现输出的净切换。单极霍尔效应的数字输出可适应各种逻辑系统。这些器件非常适合与简单的磁棒或磁杆一同使用。单极性霍尔开关它的正反面会各指定一个磁极感应才会有作用,在具体应用当中应该注意磁铁的磁极的安装,反了就会造成单极性不感应输出。

2、双极霍尔效应开关(数字输出)

双极性霍尔具体又分双极性不带锁存型霍尔开关和双极性锁存型霍尔开关。

双极霍尔效应开关通常在南极磁场强度足够的情况下打开,并在北极磁场强度足够的情况下关闭,但如果磁场被移除,则是随机输出,有可能是打开,也有可能是关闭。双极锁存型霍尔效应开关通常在南极磁场强度足够的情况下打开,并在北极磁场强度足够的情况下关闭,但如果磁场被移除,不会更改输出状态。这些霍尔效应开关可使用南北交变磁场、多极环磁铁进行磁驱动。

3、双极锁存型霍尔效应开关(数字输出)

当置于n极(或s极)时开启,磁场移除后继续保持开启;而只有当置于s极(或n极)时才会关闭,磁场移除后继续保持其开启或关闭状态,直到下次磁场改变。这种保持上次状态的特性即锁存特性,这种类型的霍尔效益开关即双极锁存型霍尔效应开关。

4、全极霍尔效应开关(数字输出)

与其他霍尔效应开关不同,只要存在强度足够大的北极或南极磁场,这些器件就能打开;而在没有磁场的时候,输出会关闭。

5、线性霍尔效应传感器 IC(模拟输出)

线性霍尔效应传感器 IC 的电压输出会精确跟踪磁通密度的变化。在静态(无磁场)时,从理论上讲,输出应等于在工作电压及工作温度范围内的电源电压的一半。增加南极磁场将增加来自其静态电压的电压。相反,增加北极磁场将增加来自其静态电压的电压。这些部件可测量电流的角、接近性、运动及磁通量。它们能够以磁力驱动的方式反映机械事件。

6、微功耗型霍尔效应开关(数字输出)

随着手机、笔记本电脑、DV等便携式设备的普及,对霍尔IC的功耗提出要求,由此产生了一大类新的霍尔IC。它是数字霍尔IC按功耗单独分出的一类,其内部采用休眠机制降低功耗,平均功耗可以达到uA级。它也可按功能分为单级型霍尔IC、锁定型霍尔IC、和全级霍尔IC三类。这类一般用于电池长期供电的系统。

7. 开关型霍尔传感器的典型应用

磁性开关类似于电磁铁,当线圈通电后产生磁性,吸引衔铁运动,导通开关,当断电,磁性消失,开关断开。

霍尔元件是利用霍尔效应。即运动的电子或 正的载流子, 由于受洛伦兹力而偏转,因而在通道两侧积累出正负相反的电荷,产生电势差。用这个电势差做传感器的输入信号,可以测电流等。

8. 开关型霍尔传感器和线性霍尔传感器区别

霍尔传感器是根据霍尔效应制作的一种磁场传感器。通过霍尔效应实验测定的霍尔系数,能够判断半导体材料的导电类型、载流子浓度及载流子迁移率等重要参数。

霍尔效应是磁电效应的一种,这一现象是霍尔(A.H.Hall,1855—1938)于1879年在研究金属的导电机构时发现的。后来发现半导体、导电流体等也有这种效应,而半导体的霍尔效应比金属强得多,利用这现象制成的各种霍尔元件,广泛地应用于工业自动化技术、检测技术及信息处理等方面。霍尔效应是研究半导体材料性能的基本方法。

9. 开关型霍尔传感器特性

都是输出高电平脉冲信号,不同的是开关型相当于到GS设定值时电平反转;线性的可能是电压逐渐变化,到一定时使后处理电路输出反电平。一般建议用线性的,开关型常因为温度等原因使得设定值漂移,导致灵敏度下降。