掺氢燃气轮机(掺氢燃气轮机原理)

海潮机械 2023-01-17 13:52 编辑:admin 234阅读

1. 掺氢燃气轮机原理

  燃气涡轮发动机(Gas turbine engine或Combustion turbine engine)或称燃气轮机,是属于热机的一种发动机。燃气轮机可以是一个广泛的称呼,基本原理大同小异,包括涡轮喷射引擎等等都包含在内。而一般所指的燃气涡轮引擎,通常是指用于船舶(以军用作战舰艇为主)、车辆(通常是体积庞大可以容纳得下燃气涡轮机的车种,例如坦克、工程车辆等)、发电机组等的。与推进用的涡轮发动机不同之处,在于其涡轮机除了要带动压缩机外,还会另外带动传动轴,传动轴再连上车辆的传动系统、船舶的螺旋桨或发电机等。  优势  燃气轮机第一个优势是功率密度极大。一般情况下,同等功率的燃机体积是柴油机的三分之一到五分之一,是蒸汽轮机的五分之一到十分之一左右。这是由于燃气轮机本身精巧的连续转动热力学循环结构造成的,体积小、功率大,非常适合军舰分舱小、航速要求高的特点。  燃气轮机的第二个优势是启动速度快。虽然燃机的转速是三种动力系统中最高的,但是由于整个转子十分轻巧,在启动机帮助下在1-2分钟就可以达到最高转速。而柴油机由于转子运动源于活塞的往复,加速较慢,蒸汽轮机更是“反应迟钝”,整个系统达到最高功率输出可能需要长达一小时的时间。而启动速度,对于军舰的战时出动和反潜作战时加减速性能有着直接的影响。  燃气轮机第三个优势是噪声低频分量很低。由于燃气轮机本身处于高速稳定转动当中,产生的噪声更多是高频啸声。而柴油机的活塞往复产生了大量低频机械振动噪声,恰好迎合了海洋容易传播低频噪声的特点,导致军舰容易被敌方声纳探测。所以柴油机动力尤为不适合给反潜军舰作动力系统。  劣势  由于燃气轮机工作时需要吸入大量的新鲜空气,同时排放出大量的废气,因此燃气轮机在军事舰艇中的使用会带来排烟系统占据大量舰艇空间,简单来说就是需要较蒸汽轮机更大的烟囱,从而导致其余设备在空间和结构上的局限性。

2. 掺氢燃气轮机消防系统

①明确提出开展可再生能源电解制氢示范工程,可以预计可再生能源电解制氢将迎来大发展,这也跟当前行业发展趋势相符;

②再次提出发展氢燃料燃气轮机,这是工信部第二次明确发展氢燃料燃气轮机——此前8月份,工信部在对十三届全国人大四次会议第5736号建议的答复中表示,下一步,工信部将积极配合相关部门制定氢能发展战略,研究推动将氢气内燃机纳入其中予以支持;

③氢能装备里,将超高压氢气压缩机单独提出来,显示工信部对该关键部件的特别看重,同样可预计,接下来超高压氢气压缩机会引起各方面的关注,不排除燃料电池汽车城市群的“八大件”,会增加“超高压氢气压缩机”;

④整个规划更加重视绿氢,一般来说,绿氢是方向,灰氢是过渡,但规划显示,绿氢要加快发展;

⑤氢能应用不只是氢燃料电池汽车,氢炼化的钢铁、水泥、化工等领域都将迎来大发展,这也跟今年的行业发展趋势相符合,氢气在多场景里的应用探索逐渐增多;

⑥绿氢开发利用,将在新型污染物治理技术上发挥更大作用。

3. 氢燃料燃气轮机

一、用途不同 航空发动机主要用于航空动力,其整机重要指标:推力型的侧重推重比、耗油率、比功、单位迎风面积推力等;功率型的侧重功重比、耗油率、比功等。

燃气轮机主要用于电力、工业、舰船和国防陆用等领域作为动力装置,通常是由航空发动机衍生出来的,而后独立发展的高技术产品。

其能量输出方式只有功率输出,整机重要指标:陆用型侧重热效率、比功、使用寿命等;车船型侧重热效率、比功、使用寿命、单位体积功率等。

二、组成部件不同 航空发动机和燃气轮机二者由于组成的部件不同,部件间的匹配关系不同。

航空发动机追求先进气动热力设计、高热力循环参数;追求高推重比、高功重比;追求矢量推力技术、隐身技术、高机动下的工作稳定性技术;需要考虑防冰冻、防鸟撞、防雷击等。

燃气轮机追求高热效率、低成本、耐久性、高可靠性、长寿命设计技术;追求先进燃气/蒸汽联合循环、间冷、回热、再热等复杂的热力循环技术,提高循环热效率。

三、压气机不同 航空发动机压气机追求的指标是在高效率和高稳定性的前提下尽量降低自重和减小迎风面积(风扇除外),满足非常宽的飞行包络线,而长寿命(即大修时间间隔)以及生产和制造成本是次要因素。

燃气轮机的压气机则是追求在高效率和高稳定性的同时,尽量延长压气机的寿命,降低生产和制造成本,而自重则是次要因素。

四、燃烧设计不同 航空发动机追求短环形燃烧室设计,高温升、高热容强度燃烧室设计技术;高空再点火和高空稳定燃烧技术;对民用航空发动机还要求高效低排放燃烧室设计技术。

燃气轮机尤其是重型燃气轮机,其结构多为管-环结合的干式低排放燃烧室。

追求油/气互换,合成气、中低热值气多燃料适应性,干式低NOx燃烧技术。

新一代重型燃气轮机多采用纯氢和富氢燃料,实现近零排放燃烧室设计技术。

五、透平不同 透平必须采用先进的气动设计高效率地转化能量,同时必须能够在极端的工作环境中保证工作的可靠性。

航空发动机透平进口温度更高,且叶片截面小,叶片短,采用气冷方式,高、低压透平或动力涡轮设计追求高负荷、高效率的气动设计;追求新型高7a686964616fe59b9ee7ad9431333431366265效冷却透平叶片设计技术,高负荷、高可靠性透平结构设计技术,对转涡轮设计技术和流热固多场耦合分析技术等。

燃气轮机尤其是重型燃气轮机,透平进口温度相对较低,透平叶片截面大,叶片长,既可采用空气冷却技术、也可采用蒸汽/空气综合冷却技术,多级透平设计追求高气动效率和长寿命。

来源:中国科学院——燃气轮机与航空发动机的关系—血浓于水与龙生九子

4. 掺氢燃气轮机 光伏

16.5万吨。

光伏级三氯氢硅生产难度也较大,部分多晶硅生产企业拥有配套的三氯氢硅产能。目前国内可外售光伏级产能只有16.5万吨,在建产能只有约3.5万吨。随着下游光伏需求快速增长,导致光伏级三氯氢硅供给紧缺。

三氯氢硅又称三氯硅烷、硅氯仿,是卤硅烷系列化合物中最重要的一种产品。三氯氢硅主要用于生产多晶硅、硅烷偶联剂,其中多晶硅主要应用于太阳能电池、半导体材料、金属陶瓷材料、光导纤维;硅烷偶联剂主要应用于表面处理剂、无机填充塑料、增粘剂、密封剂、特种橡胶粘合促进剂等领域。

5. 掺氢燃气轮机热效率

氢氧燃料电池能量转换效率

太阳能电池所发的电能,经可再生氢-氧燃料电池装置的蓄电-发电后要打很大的折扣:①电解水的能量转换效率不到90%;②目前由氢、氧化学能发电的能量转换效率只有40%左右(60%为废热),所得总转换效率仅35%左右。也就是说,太阳能电池发的1度电,经可再生氢-氧燃料电池装置蓄能-发电循环后,只剩下0.35度电;③与其他蓄电池装置不同,燃料电池装置有许多辅助部件,它们在运行中还得消耗能量,其百分点随设计而异,大约在10至20之间,即向装置外提供的能量大约只有0.3度电,即实际可用的能量转换效率大约只有30%。美国为“Helios”无人飞机研制的URFC,系统的效率就是31.6%。