成都微型齿轮减速机(双速齿轮减速机)

海潮机械 2022-12-23 01:09 编辑:admin 226阅读

1. 双速齿轮减速机

汽车主减速器按数目分:双级减速器、单级减速器。除了一些要求大传动比的中、重型车采用双级主减速器外,一般微、轻、中型车基本采用单级主减速器。

按主减速器传动比档数分:单速式和双速式两种。目前,国产汽车基本都采用了传动比固定的单速式主减速器。在双速式主减速器上,设有供选择的两个传动比,这种主减速器实际上又起到了副变速器的作用。

按减速齿轮副结构型式分:圆柱齿轮式、圆锥齿轮式、双曲面齿轮式、蜗轮蜗杆式。现代汽车的主减速器,广泛采用螺旋锥齿轮和双曲面齿轮。双曲面齿轮工作时,齿面间的压力和滑动较大,齿面油膜易被破坏,必须采用双曲面齿轮油润滑,绝不允许用普通齿轮油代替,否则将使齿面迅速擦伤和磨损,大大降低使用寿命。

2. 双速齿轮减速机的作用

主减速器:主减速器一般用来改变传动方向,降低转速,增大扭矩,保证汽车有足够的驱动力和适当的速皮。主减速器类型较多,有单级、双级、双速、轮边减速器等。

由一对减速齿轮实现减速的装置,称为单级减速器。其结构简单,重量轻,东风BQl090型等轻、中型载重汽车上应用广泛。但是对一些载重较大的载重汽车,要求较大的减速比,用单级主减速器传动,则从动齿轮的直径就必须增大,会影响驱动桥的离地间隙,所以采用两次减速。通常称为双级减速器。双级减速器有两组减速齿轮,实现两次减速增扭[3

3. 齿轮传动减速机

两种减速机各有优缺点,并有着各自的适用范围。其中齿轮减速机不仅可用于小功率,而且还可以用于重载传动,传递功率可达数千千瓦。摆线减速机单级速比大,传递同样功率时,其体积可比齿轮减速机明显减小。但摆线减速机仅能用于中小功率传动,其最大传递功率不宜超过35千瓦。如果在不超过摆线减速机传递功率范围内,当速比较大时,选用摆线减速机应该更为适宜。

4. 双速齿轮减速机结构图

主减速器的作用

主减速器将输人转速降低并相应增大输人转矩,还可以改变转矩的方向,满足车辆行驶要 。

据不同的使用要求,主减速器有不同的结构型式。

按齿轮传动副的数目分有单级式和双级式。

目前,汽车、小型客车、轻型和中型货车一般采用单级式主减速器;大型和重 型货车不仅要求较大的主减速比,而且要求较大的离地间隙,故多采用双级式主减速器。

按主减速器传动比挡数有单速式和双速式。

前者的传动比是固定的,后者有两个传动 比供驾驶员选择,以适应不同行驶条件的需要。

按齿轮传动副的结构型式分,主减速器有圆柱齿轮式、圆锥齿轮式和准双曲面齿轮式 等。圆柱齿轮式又可分为定轴轮系和行星轮系,定轴轮系圆柱齿轮式主减速器适用于发动 机横置的汽车,行星轮系式主减速器适用于大型和重型汽车轮边减速器,其主减速器采用 螺旋圆锥齿轮或准双曲面齿轮。螺旋圆锥齿轮传动主、从动齿轮轴线交叉,

若主动齿轮轴线向下偏移,在保证必须有离地间隙的情况下,可使车辆质心降低,提高了行驶稳 。

5. 双齿轮减速器

线轮传动是指由外齿轮齿廓为变态摆线、内齿轮轮齿为圆销的一对内啮合齿轮和输出机构所组成的行星齿轮传动。

除齿轮的齿廓外,其他结构与少齿差行星齿轮传动相同。摆线针轮行星减速器的传动比约为6~87,效率一般为0.9~0.94。发生圆在基圆上滚动,若大于r1,点画出的是长幅外摆线;若小于r1,点画出的是短幅外摆线;用这些摆线中一根曲线上的任意点作为圆心,以针齿半径rZ为半径画一系列圆,而后作一根与这一系列圆相切的曲线,得到的就是相应的长幅外摆线齿廓或短幅外摆线齿廓,其中短幅外摆线齿廓应用最广。

用整条短幅外摆线作齿廓时,针轮和摆线轮的齿数差仅为1,而且理论上针轮有一半的齿数都与摆线轮齿同时啮合传动。但如果用部分曲线为齿廓就可得到两齿差和三齿差的摆线针轮传动。用长幅外摆线的一部分作轮齿曲线时,其齿廓与圆近似,并与针齿半径相差不大,因此可用它的密切圆弧代替。摆线针轮传动的优点是传动比大、结构紧凑、效率高、运转平稳和寿命长。

摆线针轮行星传动具有传动比大、结构紧凑、承载能力大和传动效率高等突出的优点,广泛应用于机械、矿山、冶金、化工、纺织、国防工业等工业领域.该传动啮合齿数多,误差平均效应显著,传动精度高,且没有柔性构件,扭转刚度高,近年来在精密传动领域受到了广泛关注。此外,基于摆线针轮行星传动原理的摆线齿轮泵由于啮合过程平稳、脉动小、噪声低,也得到了各国的重视。

摆线针轮行星啮合传动的理论通常描述为:外摆法和内摆法形成短幅摆线;短幅摆线和针齿满足齿廓啮合定律;连续传动条件[1,2]。与渐开线等齿轮共轭啮合传动的理论相比,该理论存在以下问题:(Ⅰ)缺乏严密的数学推导,啮合方程、啮合线等与传动特性密切联系的问题没有相应的阐述;(Ⅱ)理论不成体系,如一齿差、多齿差行星传动通常是分别论述,没有反应内齿轮齿廓确定为针齿后其共轭齿廓的实质;(Ⅲ)有自相矛盾的结论,如连续传动条件为针轮比摆线轮多一齿,而实际上二齿差、三齿差完全能够正确啮合传动;(Ⅳ)概念不清晰,对于正确啮合条件、重合度等未给出明确的定义及计算方法。

6. 双速齿轮减速机工作原理

双速电机的工作原理是改变定子极对数来改变电机速度的,电机速度与极对数成反比,极对数增加一倍时,转速下降一半,否则反之,于是达到调速目的。

定子极对数可由改变定子绕组的接线方式来改变,关键就在于每相定子绕组内的电流改变方向。常用的接线有:Y改成YY,△改成YY和顺串Y--反串Y这三种接法。

7. 双速齿轮减速机原理

原理:电机的变速采用改变绕组的连接方式,也就是说用改变电机旋转磁场的磁极对数来改变它的转速。双速电机(风机),平时转速低,有时风机就高速转,主要是通过以度下外部控制线路的切换来改变电机线圈的绕组连接方式来实现:1、在定子槽内嵌有两个不同极对数的共有绕组,通过外部控制线路的切换来改变电机定子绕组的接法来实现变更磁极对知数;

8. 双向减速机

是小齿轮,电机与主动轮小轮所在的轴相连,小轮通过带动大轮运动来实现减速的目的。

减速器的选用原则:按机械强度确定减速器的规格。减速器的额定功率p1n 是按载荷平稳、每天工作小于等于10h、每小时启动5次、允许启动转矩为工作转矩的两倍、单向运转、单对齿轮的接触强度安全系数为失效概率小于等于1%等条件算确定。

当载荷性质不同,每天工作小时数不同时,应根据工作机载荷分类按各种系数进行修正.减速器双向运转时,需视情况将p1n乘上0.7~1.0的系数,当反向载荷大、换向频繁、选用的可靠度kr较低时取小值,反之取大值。功率按下式计算:p2m=p2*ka*ks*kr ,其中p2 为工作功率; ka 为使用系数; ks 为启动系数; kr 为可靠系数。