1. 工业机器人的组成部件中实现操作功能的是什么
工业机器人的主轴和腕部分别实现的功能。
腕部作用:改变或调整机器人手部在空间的姿态(方向),并连接机器人的手部和臂部。
主轴作用:在机器中主要用来支撑传动零件如齿轮、带轮,传递运动及扭矩的作用。
2. 工业机器人按系统功能分为
一般来说工业机器人的驱动系统工作模式分别为液压系统,气动系统和电动系统三大类。但是根据需要也可以把这三种基本类型组合成一个复合式的驱动系统。这三种基本驱动系统的主要区别在于他们的动力源各不相同。
工业机器人是广泛用于工业领域的多关节机械手或多自由度的机器装置,具有一定的自动性,可依靠自身的动力能源和控制能力实现各种工业加工制造功能。工业机器人被广泛应用于电子、物流、化工等各个工业领域之中。
3. 工业机器人组成及各组成部分的作用
机器人由三大部分六个子系统组成。三大部分是机械部分、传感部分和控制部分。六个子系统是驱动系统、机械结构系统、感受系统、机器人一环境交换系统、人机交换系统和控制系统。
机械结构传动,工业机器人的机械结构系统由机座、手臂、末端操作器三大部分组成,每一个大件都有若干个自由度的机械系统。若基座不具备行走机构,则构成行走机器人;若基座不具备行走及弯腰机构,则构成单机器人臂。手臂一般由上臂、下臂和手腕组成。
末端操作器是直接装在手腕上的一个重要部件,它可以是二手指或多手指的手抓,也可以是喷漆枪、焊具等作业工具。
4. 工业机器人的系统组成包括哪些部分
定义:工业机器人是面向工业领域的多关节机械手或多自由度的机器装置,它能自动执行工作,是靠自身动力和控制能力来实现各种功能的一种机器。它可以接受人类指挥,也可以按照预先编排的程序运行,现代的工业机器人还可以根据人工智能技术制定的原则纲领行动。
特点:
1)可编程。生产自动化的进一步发展是柔性启动化。工业机器人可随其工作环境变化的需要而再编程,因此它在小批量多品种具有均衡高效率的柔性制造过程中能发挥很好的功用,是柔性制造系统中的一个重要组成部分。
2)拟人化。工业机器人在机械结构上有类似人的行走、腰转、大臂、小臂、手腕、手爪等部分,在控制上有电脑。此外,智能化工业机器人还有许多类似人类的“生物传感器”,如皮肤型接触传感器、力传感器、负载传感器、视觉传感器、声觉传感器、语言功能等。传感器提高了工业机器人对周围环境的自适应能力。
3)通用性。除了专门设计的专用的工业机器人外,一般工业机器人在执行不同的作业任务时具有较好的通用性。比如,更换工业机器人手部末端操作器(手爪、工具等)便可执行不同的作业任务。
4)工业机器技术涉及的学科相当广泛,归纳起来是机械学和微电子学的结合-机电一体化技术。第三代智能机器人不仅具有获取外部环境信息的各种传感器,而且还具有记忆能力、语言理解能力、图像识别能力、推理判断能力等人工智能,这些都是微电子技术的应用,特别是计算机技术的应用密切相关。因此,机器人技术的发展必将带动其他技术的发展,机器人技术的发展和应用水平也可以验证一个国家科学技术和工业技术的发展水平。
5. 工业机器人的组成及其各部分的功能
工业机器人由主体、驱动系统和控制系统三个基本部分组成。主体即机座和执行机构,包括臂部、腕部和手部,有的机器人还有行走机构。大多数工业机器人有3~6个运动自由度,其中腕部通常有1~3个运动自由度;驱动系统包括动力装置和传动机构,用以使执行机构产生相应的动作;控制系统是按照输入的程序对驱动系统和执行机构发出指令信号,并进行控制。
6. 工业机器人由哪些部件组成
想知道什么是工业机器人,就要先知道工业机器人的发展历程,这样更为方便的理解工业机器人出现的原因,以及现在的工业机器人为啥是这个外观形态?
1930-1960年代
伴随伺服系统技术,以及计算机技术在美国产生,美国科学领域的研究人员开始着手在机械手方面研发。(看清楚了啊,美国的伺服技术确实发展很早)
第一台真正意义上的工业机器人,是在计算发展起来后出现。在1959年之前,有很长时间的发展历程,第一台机器人的制造是美国人恩格尔伯格,制造的第一台五轴机器人,应用于压铸领域。
(五轴机器人应用)
第一机器人其实已经采用了计算机控制,同时也使用了分离式固体数控元件,在没有磁盘的年代采用的装有存储信息的磁鼓,能够记忆完成180个工作步骤。
1960年也被称为机器人的元年。
1960-1980年代:工业机器人逐步进入汽车行业
第一台机器人发展后,恩格尔伯格以及合伙人的Unimation公司逐步上了正轨,但是在工业机器人渐渐有起色的时候,这兄弟把公司给卖了。
1973年,现代意义上的关节机器人开始出现。这时候的工业机器人的驱动已经变成电驱动,采用电机驱动。
左边是1973年IRB-6六轴机器人,这是现代工业机器人的基础模型,后期的不少产品都有借鉴这个机器人的影子。
右图是scara机器人的原型,1978年日本Hitata公司制造出第一台scara机器人,scara机器人的原理和模型是日本在电子产业发展中发展起来的。
基于这几大类,基本上奠定了工业机器人的主要机器人类型。
1980年后的工业机器人市场是日本人的天下。
1973年,仍然还是富士通公司的稻叶清右引入美国的伺服电机技术,率先应用在当时的加工中心里面。
而后,开始主导开发工业机器人,1974年FANUC机器人公司建立,并与1976年推向市场。
真正让fanuc发展最快的是其同美国GE合资进入美国,并且快速的占领美国数控系统市场,同时也将工业机器人打入了美国汽车厂商内部。
fanuc专利申请量变化曲线
日本机器人的销量变化趋势。
日本机器人的发展基本奠定了,全球早起机器人发展的模式以及格局。
1985年,工业机器人开始应用在汽车焊装线上面,这一应用,让工业机器人发展得到了腾飞,整个焊装线容纳了工业机器人50%以上的产量。
1989年,SONY第一次将将scara机器人应用于VCR装配线上面。
从以上机器人的基本发展历程,大体上就能够理解机器人的出现,以及机器人形态,包括机器人出现的原因了。
那么下面就是比较枯燥的,机器人基本形态构成了。
形成了通用机器人+细分行业应用机器人的模式。
各个种类机器人:
在不断的发展和探索中,最后形成了,四轴,六轴,scara,delta这几大机器人类型。
这种依靠控制系统进行运动控制,使用伺服电机作为驱动的机械手臂结构,就是工业机器人机构。
机器人基本构成是由:
工业机器人一个关节,叫一个轴:
机器人结构爆炸图
怎么定义工业机器人呢?
具备的特点是:用工程的方法实现人体所持有的动作功能,以完成这些功能所必要的智能。
说白了就是机器人可以编程,可以重复使用,一台机器人可以应用在不同领域,这也就是我们常说的柔性化。所谓的柔性化,对应的是专用的固定的功能。例如车床就就是固定的,没有柔性化的机械。
总结:如今工业机器人已经在各个行业得到使用,大部分都见过工业机器人。未来,工业机器人使用量仍会不断增加。
7. 简述工业机器人系统组成及各部件功能
工业机器人由主体、驱动系统和控制系统三个基本部分组成。主体即机座和执行机构,包括腰部、肩部、肘部和手腕部,其中手腕部有3个运动自由度。
驱动系统包括动力装置和传动机构,用以使执行机构产生相应的动作。
控制系统是按照输入的程序对驱动系统和执行机构发出指令信号,并进行控制。
8. 工业机器人各组成单元的功能是什么
1 机械本体:机器人的机械本体机构基本上分为两大类,一类是操作本体机构,它类似人的手臂和手腕,另一类为移动型本体结构,主要实现移动功能。
2 驱动伺服单元:伺服单元的作用是使驱动单元驱动关节并带动负载按预定的轨迹运动。已广泛采用的驱动方式有:液压伺服驱动、电机伺服驱动,气动伺服驱动。
3 计算机控制系统:各关节伺服驱动的指令值由主计算机计算后,在各采样周期给出。机器人通常采用主计算机与关节驱动伺服计算机两级计算机控制。
4 传感系统:除了关节伺服驱动系统的位置传感器(称作内部传感器)外,还配备视觉、力觉、触觉、接近觉等多种类型的传感器(称作外部传感器)。
5 输入/输出系统接口:为了与周边系统及相应操作进行联系与应答,还应有各种通讯接口和人机通信装置。
9. 工业机器人的基本组成及各部分的作用
机器人目前是典型的机电一体化产品,一般由机械本体、控制系统、传感器、驱动器和输入/输出系统接口等五部分组成。为对本体进行精确控制,传感器应提供机器人本体或其所处环境的信息,控制系统依据控制程序产生指令信号,通过控制各关节运动坐标的驱动器,使各臂杆端点按照要求的轨迹、速度和加速度,以一定的姿态达到空间指定的位置。驱动器将控制系统输出的信号变换成大功率的信号,以驱动执行器工作。
1.机械本体
机械本体,是机器人赖以完成作业任务的执行机构,一般是一台机械手,也称操作器、或操作手,可以在确定的环境中执行控制系统指定的操作。典型工业机器人的机械本体一般由手部(末端执行器)、腕部、臂部、腰部和基座构成。机械手多采用关节式机械结构,一般具有6个自由度,其中3个用来确定末端执行器的位置,另外3个则用来确定末端执行装置的方向(姿势)。机械臂上的末端执行装置可以根据操作需要换成焊枪、吸盘、扳手等作业工具。
2.控制系统
控制系统是机器人的指挥中枢,相当于人的大脑功能,负责对作业指令信息、内外环境信息进行处理,并依据预定的本体模型、环境模型和控制程序做出决策,产生相应的控制信号,通过驱动器驱动执行机构的各个关节按所需的顺序、沿确定的位置或轨迹运动,完成特定的作业。从控制系统的构成看,有开环控制系统和闭环控制系统之分;从控制方式看有程序控制系统、适应性控制系统和智能控制系统之分。
3.驱动器
驱动器是机器人的动力系统,相当于人的心血管系统,一般由驱动装置和传动机构两部分组成。因驱动方式的不同,驱动装置可以分成电动、液动和气动三种类型。驱动装置中的电动机、液压缸、气缸可以与操作机直接相连,也可以通过传动机构与执行机构相连。传动机构通常有齿轮传动、链传动、谐波齿轮传动、螺旋传动、带传动等几种类型。
4.传感器
传感器是机器人的感测系统,相当于人的感觉器官,是机器人系统的重要组成部分,包括内部传感器和外部传感器两大类。内部传感器主要用来检测机器人本身的状态,为机器人的运动控制提供必要的本体状态信息,如位置传感器、速度传感器等。外部传感器则用来感知机器人所处的工作环境或工作状况信息,又可分成环境传感器和末端执行器传感器两种类型.
前者用于识别物体和检测物体与机器人的距离等信息,后者安装在末端执行器上,检测处理精巧作业的感觉信息。常见的外部传感器有力觉传感器、触觉传感器、接近觉传感器、视觉传感器等。
5. 输入/输出系统接口:为了与周边系统及相应操作进行联系与应答,还应有各种通讯接口和人机通信装置。
10. 工业机器人的系统组成及各个系统的主要功能
1.工业机器人的组成
工业机器人一般由执行机构、控制系统、驱动机构及位置检测机构的等部分组成。
1.执行机构
执行机构是一种具有和人手脚相似动作功能的机械装置,又称操作机,有以下几个部分组成
1)手部 称抓取机构或夹持器,用于直接抓取工件或工具。若在手部安装专用工具,如焊枪、电钻、电动螺钉拧紧器等,就构成了专用的特殊手部。工业机器人手部有机械夹持式、真空吸附式、磁性吸附式等不同的结构形式。
2)腕部 接手部和手臂的部件,用以调整手部的姿态和方位。
3)臂部 撑手腕和手部的部件,由动力关节和连杆组成,用以承受工件或工具负荷。
4)机座与立柱 是支撑整个机器人的基础件,起到连结和支承的作用,控制机器人的活动范围和改变机器人的位置。
2.控制系统
控制系统是机器人的大脑,控制与支配机器人按给定的程序动作,并记忆人们示教的指令信息,如动作顺序、运动轨迹、运动速度等,可再现控制所存储的示教信息。
3.驱动系统
是机器人执行作业的动力源,按照控制系统发来的控制指令驱动执行机构完成规定的作业。常用的驱动系统有机械式、液压式、气动式以及驱动等不同的驱动形式。
(4)位置检测装置 通过附设的力、位移、触觉、视觉等不同的,检测机器人的运动位置和工作状态,并随时反馈给控制系统,以便执行机构以一定的精度和速度达到设定的位置。
2.工业机器人的分类
机器人分类方法很多,这里仅按机器人的系统功能、驱动方式以及机器人的结构形式进行分类。
(1)按系统功能分类
1)专用机器人:在固定地点以固定程序工作的机器人,其结构简单、工作对象单一、无独立控制系统、造价低廉,如附设在机床上的自动换刀机械手。
2)通用机器人:具有独立控制系统,通过改变控制程序能完成多种作业的机器人。其结构复杂,工作范围大,定位精度高,通用性强,适用于不断变换生产品种的柔性制造系统。
3)示教再现式机器人:具有记忆功能,在操作者的示教操作后,能按示教的顺序、位置、条件与其他信息反复重现示教作业。
4)智能机器人:采用,具有视觉、听觉、触觉等多种感觉功能和识别功能的机器人,通过比较和识别,自主作出决策和规划,自动进行信息反馈,完成预定的动作。
(2)按驱动方式分类
1)气压传动机器人:以压缩空气作为动力源驱动执行机构运动的机器人,具有动作迅速、结构简单、成本低廉的特点,适用于高速轻载、高温和粉尘大的环境作业。
2)液压传动机器人:采用液压驱动,具有负载能力强、传动平稳、结构紧凑、动作灵敏的特点,适用于重载、低速驱动场合。
3)电气传动机器人:用交流或直流伺服驱动的机器人,不需要中间转换机构,机械结构简单、响应速度快、控制精度高,是近年来常用的机器人传动结构。
(3)按结构形式分
1)直角坐标型机器人:这类机器人的手部在空间由三个相互垂直的方向x、y、z上作移动运动,运动是独立的。其控制简单,运动直观性强,易达到高精度,定位精度高,但操作灵活性差,运动的速度较低,操作范围较小而占据的空间相对较大。
2)圆柱坐标型机器人:这类机器人在水平转台上装有立柱,其立柱安装在回转机座上,水平臂可以自由伸缩,并可沿立柱上下移动。其工作范围较大,运动速度较高,但随着水平臂沿水平方向伸长,其线位移分辨精度越来越低。
3)球坐标型机器人:也称极坐标型机器人,由回转机座、俯仰铰链和伸缩臂组成,具有两个旋转轴和一个平移轴。工作臂不仅可绕垂直轴旋转,还可绕水平轴作俯仰运动,且能沿手臂轴线作伸缩运动。其操作比圆柱坐标型更为灵活,并能扩大机器人的工作空间,但旋转关节反映在未端执行器上的线位移分辨率是一个变量。
4)关节型机器人: 这类机器人由多个关节联接的机座、大臂、小臂和手腕等构成,大小臂之间用铰链联接形成肘关节,大臂和立柱联接形成肩关节,大小臂既可在垂直于机座的平面内运动,也可实现绕垂直轴的转动。其操作灵活性最好,运动速度较高,操作范围大,但精度受手臂位姿的影响,实现高精度运动较困难。它能抓取靠近机座的物件,也能绕过机体和目标间的障碍物去抓取物件,具有较高的运动速度和极好的灵活性,成为最通用的机器人。