离心泵密封环图片(离心泵的密封环装在哪里)

海潮机械 2023-01-06 09:24 编辑:admin 279阅读

1. 离心泵的密封环装在哪里

1.检验离心泵的进水水质,针对检验情况,采用洗井(建议用空气压缩机或其他机具)、设置栏污栅等措施来改善进水水质。确保能有效降低水的含沙量(一般规定井水中的含沙量体积比应不大于0.02%)及杂物含量。

2.抬高或吊起水泵的水龙头、进水喇叭,使其离开泥沙。一般情况下,以离开井底距离1米以上为好,不得小于0.5米。

3.打开化工离心泵泵体,检査密封环的间隙、叶轮的安装位置及安装质量(叶轮的定位键是否窜动、锁紧螺母是否脱落或松动以及叶轮与泵壳的间隙是否符合要求等),并视情况进行修复、调整或更换。按照要求重新正确组装水泵。在组装水泵时,一定要保证水泵的安装精度。装配机械密封时,动、静环要淸洗干净,并在摩擦副面上涂抹少量清洁的润滑油,要兼顾高压端和低压端,严禁磕碰。静环压盖安装时用力要均匀,防止压偏,安装后要用塞尺检查,上下左右位置的偏差不大于0.05毫米;检查压盖与轴外径的配合间隙,四周要均匀,各点允许偏差不大于0.1毫米,安装机械密封部位的泵轴的径向跳动不超过0.05亳米;泵盖和密封端盖装配之前,要认真复核机械密封的安装定位尺寸,如果定位尺寸不符合要求,可在轴套间用钢垫调整,但钢垫精度要高,厚度差不超过0.01毫米。

4.打开化工离心泵泵体,检查叶轮的磨损情况及固定情况。如果叶轮发生了偏磨损,则应卸下叶轮进行修复或更换。

5.消除气蚀因素,改善抗气蚀性能,并视情况适当降低水泵安装髙度(要正确地计算出水泵的安装高度)。

2. 离心泵叶轮密封环

离心泵是利用叶轮旋转而使水发生离心运动来工作的。水泵在启动前,必须使泵壳和吸水管内充满水,然后启动电机,使泵轴带动叶轮和水做高速旋转运动,水发生离心运动,被甩向叶轮外缘,经蜗形泵壳的流道流入水泵的压水管路。

各类离心泵原理和结构示意图,及常见故障处理

一、离心泵种类

各类离心泵原理和结构示意图,及常见故障处理

单级离心泵

各类离心泵原理和结构示意图,及常见故障处理

多级离心泵

各类离心泵原理和结构示意图,及常见故障处理

立式泵

各类离心泵原理和结构示意图,及常见故障处理

屏蔽式离心泵

各类离心泵原理和结构示意图,及常见故障处理

卧式离心泵

二、离心泵基本构造

各类离心泵原理和结构示意图,及常见故障处理

各类离心泵原理和结构示意图,及常见故障处理

离心泵的基本构造是由八部分组成的,分别是:叶轮,泵体,泵盖,挡水圈,泵轴,轴承,密封环,填料函,轴向力平衡装置。

1、 叶轮是离心泵的核心部分,它转速高输出力大。

2、 泵体也称泵壳,它是水泵的主体。起到支撑固定作用,并与安装轴承的托架相连接。

3、 泵轴的作用是借联轴器和电动机相连接,将电动机的转矩传给叶轮,所以它是传递机械能的主要部件

4、 密封环又称减漏环。

5、 填料函主要由填料,不让泵内的水流流到外面来也不让外面的空气进入到泵内。始终保持水泵内的真空!当泵轴与填料摩擦产生热量就要靠水封管注水到水封圈内使填料冷却!

6、轴向力平衡装置,在离心泵运行过程中,由于液体是在低压下进入叶轮,而在高压下流出,使叶轮两侧所受压力不等,产生了指向入口方向的轴向推力,会引起转子发生轴向窜动,产生磨损和振动,因此应设置轴向推力轴承,以便平衡轴向力。

各类离心泵原理和结构示意图,及常见故障处理

各类离心泵原理和结构示意图,及常见故障处理

各类离心泵原理和结构示意图,及常见故障处理

各类离心泵原理和结构示意图,及常见故障处理

各类离心泵原理和结构示意图,及常见故障处理

各类离心泵原理和结构示意图,及常见故障处理

各类离心泵原理和结构示意图,及常见故障处理

三、单级离心泵

各类离心泵原理和结构示意图,及常见故障处理

单级单吸式离心泵

各类离心泵原理和结构示意图,及常见故障处理

单级双吸离心泵

各类离心泵原理和结构示意图,及常见故障处理

各类离心泵原理和结构示意图,及常见故障处理

单级离心泵故障处理

1、单级离心泵故障:泵上水慢

原因:前衬板与叶轮间隙大、出水管道不能封住空气、排空满。

解决方法:调节间隙、调节出水管道、安装抽真空装置。

2、单级离心泵故障:出水压力小、流量小

原因:泵内有空气、叶轮与前衬板间隙大、离合器闭合不紧、叶轮或衬板磨损。

解决方法:排空泵内气体、调节间隙、调节离合器摩擦片间隙、更换叶轮或衬板。

3、单级离心泵故障:泵磨损快

原因:施工环境(颗粒大)差、输送距离远、进水管路长。

解决方法:更换沙场、添加加力机组、缩短进水管长度减小汽蚀。

4、单级离心泵故障:水泵振动

原因:泵轴与柴油机(或电机)不同心、叶轮不平衡、轴承损坏。

解决方法:调节同心度、叶轮作平衡测试、更换轴承。

5、单级离心泵故障:泵不吸水

原因:灌注引水不够、泵内空气无法排出、吸水管漏气、前衬板与叶轮间隙大。

解决方法:继续灌注引水、检查管路是否漏气、调节叶轮与前衬板间隙。

6、单级离心泵故障:叶轮轴颈磨损快

原因:高压水泵扬程低、盘根错位、泵轴与后盖不同心。

解决方法:更换高于单级离心泵扬程的高压泵、更换盘根、调节同心度。

四、多级离心泵

各类离心泵原理和结构示意图,及常见故障处理

多级离心泵结构图

各类离心泵原理和结构示意图,及常见故障处理

多级高压锅炉给水泵结构图

各类离心泵原理和结构示意图,及常见故障处理

卧式多级离心泵结构图

4.1 自平衡多级离心泵

各类离心泵原理和结构示意图,及常见故障处理

自平衡多级离心泵总图

各类离心泵原理和结构示意图,及常见故障处理

自平衡多级离心泵部件

各类离心泵原理和结构示意图,及常见故障处理

自平衡多级离心泵部件

各类离心泵原理和结构示意图,及常见故障处理

自平衡多级离心泵部件

4.2 自平衡多级离心泵故障处理

各类离心泵原理和结构示意图,及常见故障处理

各类离心泵原理和结构示意图,及常见故障处理

五、高温管道离心泵

各类离心泵原理和结构示意图,及常见故障处理

耐高温管道油泵防爆管道离心泵结构图

各类离心泵原理和结构示意图,及常见故障处理

各类离心泵原理和结构示意图,及常见故障处理

主要配件

各类离心泵原理和结构示意图,及常见故障处理

各类离心泵原理和结构示意图,及常见故障处理

耐高温管道油泵防爆管道离心泵管道连接方式图

各类离心泵原理和结构示意图,及常见故障处理

各类离心泵原理和结构示意图,及常见故障处理

耐高温管道油泵防爆管道离心泵管道安装方式图

故障处理

各类离心泵原理和结构示意图,及常见故障处理

各类离心泵原理和结构示意图,及常见故障处理

各类离心泵原理和结构示意图,及常见故障处理

六、立式多级离心泵

各类离心泵原理和结构示意图,及常见故障处理

各类离心泵原理和结构示意图,及常见故障处理

各类离心泵原理和结构示意图,及常见故障处理

立式离心泵结构图

故障处理方法

各类离心泵原理和结构示意图,及常见故障处理

3. 离心泵机械密封图

在旋转过程中,两密封环(旋转环、固定环)之间形成水膜,不易漏水。

而静止时,无法形成水膜,虽然他们之间有弹簧压紧,还是会有少量渗水,

4. 离心水泵密封环示意图

一:离心泵的拆卸过程中需要注意的问题:在对多级离心泵进行拆卸之前,最好先熟悉一下多级离心泵的产品说明书,及产品的结构图和安装图。

拆止推轴承前应利用百分表测量出平衡盘间隙,并做好记录 ,为了避免产品安装出错,在对多级泵拆卸时,必须将多级泵的零部件按照一定的顺序做好标记

二:离心泵各部件检查需要注意的问题:目测各零件表面是否正常,各配合面必须无磕碰划伤、无锈蚀等,用量具实测关键配合部位公差是否合格,量叶轮密封环、壳体密封环、导叶密封环、级间轴套等处的间隙是否在允差范围内,磨损过大的需要更换。

检查轴承是否完好,所有密封圈、密封垫最好都换新的

三:离心泵安装过程需要注意的问题:先将转子装好,重新进行动平衡试验,按拆泵的相反顺序回装各零件,回装时注意再次量各密封环处间隙值,确保无误,装平衡盘之前应测量转子总串量;装上平衡盘后,测量转子半串量; 与制造厂总装配图上要求的总串量及半串量对照,应基本符合图纸要求。

一般情况下半串量大约是总串量的一半左右。均匀地紧好各主螺栓,注意应对角进行; 在轴上吸一块百分表,旋转轴对平衡盘进行打表,允差按图纸要求,一般不得超过0.06; 装止推轴承时应注意调整平衡盘的间隙,应利用轴承前的调整环将平衡盘间隙调整至图纸要求

5. 离心泵水封环图片

离心泵的基本构造是由六部分组成的分别是叶轮,泵体,泵轴,轴承,密封环,填料函。

1、叶轮是离心泵的核心部分,它转速高出力大,叶轮上的叶片又起到主要作用,叶轮在装配前要通过静平衡实验。叶轮上的内外表面要求光滑,以减少水流的摩擦损失。

2、泵体也称泵壳,它是离心泵的主体。起到支撑固定作用,并与安装轴承的托架相连接。

3、泵轴的作用是借联轴器和电动机相连接,将电动机的转距传给叶轮,所以它是传递离心泵机械能的主要部件。

4、轴承是套在离心泵泵轴上支撑泵轴的构件,有滚动轴承和滑动轴承两种。滚动轴承使用牛油作为润滑剂加油要适当一般为2/3~3/4的体积太多会发热,太少又有响声并发热。滑动轴承使用的是透明油作润滑剂的,加油到油位线。太多油要沿泵轴渗出并且漂贱,太少轴承又要过热烧坏造成事故。在离心泵运行过程中轴承的温度最高在85度一般运行在60度左右,如果高了就要查找原因(是否有杂质,油质是否发黑,是否进水)并及时处理!

5、密封环又称减漏环。叶轮进口与泵壳间的间隙过大会造成泵内高压区的水经此间隙流向低压区,影响泵的出水量,效率降低!间隙过小会造成叶轮与泵壳摩擦产生磨损。为了增加回流阻力减少内漏,延缓叶轮和泵壳的所使用寿命,在泵壳内缘和叶轮外援结合处装有密封环,密封的间隙保持在0.25~1.10mm之间为宜。

6、填料函主要由填料,水封环,填料筒,填料压盖,水封管组成。填料函的作用主要是为了封闭泵壳与离心泵泵轴之间的空隙,不让泵内的水流不流到外面来也不让外面的空气进入到泵内。始终保持水泵内的真空。当离心泵泵轴与填料摩擦产生热量就要靠水封管住水到水封圈内使填料冷却。保持水泵的正常运行。所以在离心泵的运行巡回检查过程中对填料函的检查是特别要注意。

6. 离心泵密封环图片大全

  气缚:由于泵内存气,启动泵后吸不上液的现象,称气缚现象。气缚现象发生后,泵无液体排出,无噪音,振动。为防止气缚现象发生,启动前应灌满液体。

  气蚀:由于泵的吸上高度过高,使泵内压力等于或低于输送液 体温度下的饱和蒸汽压时,液体气化,气泡形成,破裂等过程中引起的剥蚀现象,称气蚀现象,气蚀发生时液体因冲击而产生噪音、振动、使流量减少,甚者无液体排出。为防止气蚀现象发生;泵的实际安装高度应不高于允许吸上高度。

  

  1、离心泵气缚现象

  (1)气缚发生原因

  离心泵在启动前没有灌满被输送的液体,或者是在运转过程中泵内渗入了空气,

因为气体的密度小于液体的密度,产生的离心力小,无法把空气甩出去,泵壳内的流体在随电机作离心运动产生负压不足以吸入液体至泵壳内,泵象被气体缚住一样,失去了自吸能力而无法输送液体,称作离心泵的气缚现象。

  

  (2)产生危害情况

  泵打不出液体来,机组产生剧烈振动,同时伴有强烈刺耳的噪音,电机空转,容易烧坏电机。影响输送液体的效率和离心泵的正常工作。

  

  (3)预防措施集锦

  启动前要灌泵并使泵壳内

充满待输送的液体,启动时关闭出口阀。为防止灌入泵壳内的液体因重力流入低位槽内,在泵吸入管路的入口处装有止逆阀(底阀);如果泵的位置低于槽内液面,则启动时无需灌泵。做好壳体的密封工作,灌水的阀门不能漏水,密封性要好

  

  2、离心泵气蚀现象

  (1)气蚀发生原因

  当泵壳内吸入的液体在

的吸入口处因压强减小恰好气化时,给泵壳内壁带来巨大的水力冲击,使壳壁象被气体腐蚀一样,该现象称为汽蚀现象。

  造成汽蚀的主要原因有:

  (1)进口管路阻力过大或者管路过细;

  (2)输送介质温度过高;

  (3)流量过大,也就是说出口阀门开的太大;

  (4)安装高度过高,影响泵的吸液量;

  (5)选型问题,包括泵

选型,泵材质的选型等。

  含气泡的液体挤入高压区后急剧凝结或破裂。因气泡的消失产生局部真空,周围的液体就以极高的速度流向气泡中心,瞬间产生了极大的高达几万kpa的高速冲击力,造成对叶轮和泵壳的冲击,使材料受到侵蚀和破坏。

  

  从造成汽蚀和气缚的原因不同来看:气缚是泵体内有空气,一般发生在泵启动的时候,主要表现在泵体内的空气没排净;而汽蚀是由于液体在一定的温度下达到了它的汽化压力。

  (2) 气蚀发生的位置

  根据水泵汽蚀发生的部位不同,可将汽蚀分为以下四类:

  叶面汽蚀:

  叶面气蚀是发生在叶片表面的汽蚀,主要是因为水泵安装过高,或流量偏离设计

流量过大时产生的汽蚀现象。其空泡形成和溃灭多发生在叶片的正面和背面或前轮盘内表面处以及叶片的根部。

 

  间隙汽蚀:

  间隙气蚀泵内水流通过突然变窄的间隙时,速度增加,局部压力下降,也会产生汽蚀。如轴流泵叶片外缘及泵壳之间的间隙内,离心泵密封环与叶轮外缘的间隙处,由于叶轮进水侧与出水侧的压盖很大,导致高速回流,造成局部压降,引起间隙汽蚀。

  涡带汽蚀:

  涡带气蚀由于集水池,进水流道设计不良或水泵在非设计条件下工作,也可能在叶轮的下方产生自上而下的带状漩涡(简称涡带),当涡带中心压力低于汽化压力时,该涡带即成为汽蚀带。

  粗糙汽蚀:

  粗糙气蚀是水流经过泵内凸凹不平的内壁面和过流部件时,在突出物的下游也容易产生局部负压而引发汽蚀,该汽蚀称为粗糙汽蚀。

  3、离心泵的气缚和气蚀产生的危害情况

  使水泵性能恶化

  汽蚀发生时将产生大量空

泡,水中含有大量空泡时,破坏了水流的正常规律,使叶槽有效过流面面积减小,流动方向随之改变,能量损失增大,从而引起水泵流量、扬程和效率的迅速下降,汽蚀严重时甚至会出现断流。

  损坏过流部件

  水泵壁面在高强度冲击力

的反复作用下,金属表面产生局部变形与硬化变脆,产生金属疲劳现象,使金属破裂与剥落。除力学作用外,还夹杂着水体中逸出的深入活泼气体(如氧气)对金属的化学腐蚀以及水体对金属的电化学腐蚀等。在综合作用下,水泵壁面起初是出现麻点,继而变成蜂窝状,严

重时壁面会在短期内被击空。

  

  产生振动和噪声

  气泡溃灭时,液体质点互相撞击,同时也撞击金属表

面,产生各种频率的噪声,严重时可听见泵内有劈啪的爆炸声,同时引起机组振动。叶轮局部在巨大冲击的反复作用下,表面出现斑痕及裂纹,甚至呈海绵状逐渐脱落,降低了泵使用寿命。

  所以噪声和振动也是用来判断汽蚀是否发生和消失的主要依据之一。

  4、离心泵气缚和气蚀预防措施

  1、减少气蚀的有效措施是防止气泡的产生。

  2、使在液体中运动的表面具有流线型,避免在局部地方出现涡流,因为涡流区压力低,容易产生气泡。此外,应当减少液体中的含气量和液体流动中

将限制气泡的形成。

  3、选择适当的材料能够提高抗气蚀能力。通常强度和韧性高的金属材料具有较好的抗气蚀性能,提高材料的抗腐蚀性也将减少气蚀破坏。

  4、离心泵入口处压力不能过低,而应有一最低允许值,此时所对应的汽蚀余量

称为必需汽蚀余量,一般由泵制造厂通过汽蚀实验测定,并作为离心泵的性能列于泵产品样本中。泵正常操作时,实际汽蚀余量必须大于必须气蚀余量,我国标准中规定应大于0.5m以上。

  5、同时要清理进口管路的异物使进口畅通,或者增加管径的大小。

  6、另外对于泵的生产厂商来说就是要提高离心泵本身抗气蚀的能力,比如改进吸入口至叶轮附近的结构设计;采用前置诱导轮,以提高液流压力;增大叶片进口角,减小叶片进口处的弯曲,以增大进口面积。

  7、离心泵的气缚和气蚀现象对于离心泵的影响是十分不利的。在日常使用离心泵前一定要按操作规程来进行,避免气缚现象的发生。同时要定期检查和维护离心泵的进出口管体温度下的饱和蒸汽压时,液体气化,气泡形成,破裂等过程中引起的剥蚀现象,称气蚀现象,气蚀发生时液体因冲击而产生