1. 煤粉浓缩器的作用
火力发电厂的废料有很多。得分系统来说。输煤系统有粉尘和冲洗水。化水系统有浓缩水。锅炉本体有浓缩水即锅炉排水还有空预器,制粉系统泄漏的粉尘及煤粉。除灰渣系统有炉渣及粉尘。
电除尘系统有大量的粉尘。脱硫脱硝系统有残余的硫化物和氮化物。这些废料在现在都进行了综合治理和有效利用。
2. 煤气是用什么提炼的
主要从炼油厂在提炼石油的裂解过程中产生。在石油炼厂石油化工厂的减压蒸馏、热裂化、催化裂化、铂重整及延迟焦化等加工过程中都可以得到液化石油气,一般来讲,提炼1吨原油可产生3%-5%的液化石油气。
2/3也可从天然气中回收液化石油气。
从油田出来的原油和湿气混合物经气液分离器分离,上部出来的天然气送到一个储气罐中,经过加压(16kg/cm2)再分馏,用柴油喷淋吸收;天然气(干气)从塔顶送出,吸收了液化气的富油经过分馏塔,在16kg/cm2压力下冷凝为液态,形成液化石油气。
3. 煤粉分离器的作用
锅炉结焦与煤炭含硫量没有必然关系。
燃煤锅炉的结焦原因及预防
锅炉结焦是燃煤锅炉运行中比较普遍的问题,结焦是煤粉炉中熔融的渣粒粘结在受热面上的一种现象。一般情况下,炉膛火焰的温度很高,在此温度下,燃料燃烧后的灰多呈熔化或软化状态。随着烟气一起运动的灰渣粒,由于炉膛水冷壁受热面的吸热而同烟气一起被冷却。如果液态的渣粒在接近水冷壁或炉墙前,已经因为温度降低而凝固,当附在受热面管壁上时,将形成一层疏松的灰层,运行中通过吹灰很容易除掉。若渣粒是以液态或半液态粘附到受热面管壁或炉墙上,将形成一层致密的灰渣层,称为结焦。
受热面结焦后,结焦层热阻很大,受热面传热能力下降,炉内吸热减少,导致烟温升高,锅炉排烟损失增大。与此同时,会引起汽温偏高,运行中为保持额定参数,不得不增加减温水量,甚至被迫降低出力。炉膛出口温度升高引起炉膛出口结焦后,增加了烟气阻力,也会造成锅炉运行经济性降低。水冷壁结焦后,传热能力下降,结焦和不结焦部分受热不均匀,可能引起水冷壁爆管事故。炉内结焦后,炉膛出口烟温上升引起过热汽温升高,而过热器、再热器结焦会加大热偏差,导致高温过热器、高温再热器超温爆破。当锅炉结焦严重,大焦突然落下时,还有可能造成灭火,甚至砸坏水冷壁管子,造成恶性事故。
1锅炉结焦原因
从根本上看,燃煤电厂炉内结焦问题既是一个复杂的物理化学过程,也是一个炉内含灰气流的流动和传热传质过程。根据有关文献资料对电厂结焦锅炉进行分析调查,影响燃煤锅炉结焦因素主要有4个:煤质特性,锅炉设计特性参数(qv,qf,qr),炉内燃烧的空气动力场特性及锅炉的运行管理。锅炉发生结焦多是各种因素复合作用的结果,以煤质特性影响最大,锅炉特性参数次之,然后是空气动力场特性,运行管理方面的原因也不可忽视。
1.1煤质特性
在影响结焦的因素中,煤质特性是主要的。近几年来,由于燃料供应紧张,往往煤质很难满足锅炉设计煤种的要求。煤在燃烧时,其灰分熔融特性用变形温度t1、软化温度t2和熔化温度t3来表示,软化温度t2的高低是判断煤灰是否容易结焦的主要指标。灰的成分不同,其熔点也不同。当煤中的硫化铁、氧化亚铁、氧化钾和氧化钠含量大时,灰熔点低,就容易结焦;当煤中的氧化硅、氧化铝含量大时,灰熔点就高,就不容易结焦。煤的灰熔点一般在1250~1500℃,而有些煤的灰熔点则低于1100℃,锅炉燃用这种煤就非常容易结焦。
另外,同一种灰分,其周围介质性质改变时,熔点也要发生变化。如灰分与一氧化碳、氢气等还原性气体相遇时,其熔点会降低,这是因为还原性气体在高温下能将灰分中的高熔点氧化铁还原成熔点低的氧化亚铁。所以,在还原性介质中测得的灰熔点要比在氧化性介质中测得的灰熔点低。
1.2锅炉设计特性参数的影响煤粉锅炉炉膛是锅炉最主要的组成部分之一,除了与燃烧器一起形成良好的燃烧条件以利于燃料着火外,主要是保证燃料的燃尽和将燃料产生的烟气冷却至必要的程度。炉膛结构设计特性对结焦影响很大,炉膛容积热负荷qv、炉膛截面热负荷qf是根据设计煤种和额定参数设计的。qv过大表示炉膛容积过小,炉膛水冷壁面积设计过小,炉膛内火焰温度高,容易造成结焦;相反,如果qv过小,则表示炉膛容积过大,炉内水冷壁布置增加,炉膛内火焰温度偏低,容易灭火。炉膛截面热负荷qf决定炉膛截面尺寸,qf越小,表示释放同样热量时,炉膛截面愈大,炉膛截面周界长度也大,燃烧区域每米炉膛高度沿横截面周界所具有的辐射受热面越多,传热能力越强,就越不容易结焦。qf选取比qv更为重要,因为这一数值的大小决定了炉膛形状,直接影响空气动力场,它的选取与燃料种类、灰渣特性、排渣方式、燃烧方式有关。
随着锅炉容量的增大,燃烧器采用多层布置,燃烧器区域壁面热负荷qr表示炉内燃烧区域温度水平与换热强度,是设计大型锅炉时作为qv和qf的一种补充指标,qr越大说明炉膛燃烧区域受热面温度水平高,容易引起受热面结焦,为了防止qr过高,可将上下排燃烧器距离拉大,降低qr,对燃用有严重结焦倾向的煤有利。qv、qf、qr是衡量锅炉炉膛燃烧的重要参数,也是判断锅炉是否容易结焦、燃烧是否稳定的重要依据。
1.3空气动力场特性影响炉内空气动力工况不良而造成的燃烧切圆过大或燃烧中心偏离,也会造成高温烟气流冲刷水冷壁面,使熔渣在接触壁面前无法凝固而结焦。
1.3.1炉内实际切圆切向燃烧在炉内形成强烈旋转上升的气流,气流最大切向速度的连线构成炉内实际切圆,炉膛中心是速度很低的微风区,这就是切向燃烧锅炉炉膛内空气动力场的特点。实际切圆是切向燃烧的一个重要参数,对炉膛结焦、稳燃以及炉膛出口的烟速、烟温偏差都有重要的影响,实际切圆偏大则容易引起结焦,实际切圆偏小则影响燃烧稳定性。因此,保证适中的实际切圆直径非常重要,影响实际切圆直径的主要参数有安装切圆直径、燃烧器高宽比、燃烧器的间隙率、一、二次风动量比、燃烧器喷口总面积与炉膛截面积比及燃烧器摆角等。
1.3.2一次风射流刚性
刚性是抗偏转能力的衡量标准,与喷口的结构及射流的动量有关,细长型喷口射流刚性比短粗型要强,当一次风射流动量增大时,气流抗偏转能力变强。
1.3.3射流两侧补气条件差异射流两侧补气条件主要由炉膛截面长宽比、假想切圆直径、燃烧器组高宽比确定。对炉膛截面长宽比大的炉膛,燃烧器轴线与两侧墙面的夹角差增大,当假想切圆直径增大时,也导致同样的结果,燃烧器轴线与两侧墙面的夹角不等,造成射流两侧补气条件差别大,引起作用在射流两边的压差,使气流容易贴边而结焦。
1.3.4燃烧器组高宽比及燃烧器喷口间隙燃烧器组高宽比及燃烧器喷口间隙也影响射流两侧补气条件。燃烧器组高宽比越大时,燃烧器组中间部分从上下两侧获取补气的条件越差,炉内旋转强度增加,一次风贴墙严重引起结焦。
1.3.5一、二次风动量比一次风速主要根据煤粉着火以及输送的需要和火焰传播速度选取,二次风主要是根据风粉气流扩散混合燃烧和焦碳燃尽的需要选取。一次风射流偏转的主要原因是上游邻角横扫过来的惯性力,该惯性力是由上游一、二、三次风混合后形成的综合动量。一、二次风动量比越大,则一次风射流偏转程度越大,炉内实际切圆越大,越容易引起结焦。
1.4运行管理方面的原因
炉内过量空气系数、四角风粉的均匀性、炉内温度水平、煤粉细度、一次风速、锅炉是否超负荷运行等都会影响结焦。另外,是否及时吹灰对炉内结焦也有影响。
2预防措施
2.1合适的炉膛热负荷
由于实际燃用煤与设计煤种不同,会造成qv、
qf过高而产生结焦,可通过改造燃烧器或卫燃带来降低燃烧器区域的热负荷,使炉膛内温度场分布合理,避免发生结焦。
2.2合理的煤粉细度
根据实际煤种情况,通过对煤粉分离器及制粉系统的调整,保证合适的煤粉细度,当燃煤的挥发分有所变化时,可通过改变一次风率作为防止结焦和稳燃的辅助手段。在实践中,煤粉细度的选择,应兼顾稳燃、炉膛及炉膛出口受热面是否结焦、机械未完全燃烧损失、制粉电耗等因素综合考虑。
2.3吹灰
加强吹灰器的管理,保证吹灰器的投入率,尤其要确保屏式过热器、高温过热器部位吹灰器的正常工作,应定时吹灰,防止受热面积灰影响传热,使烟气温度过高引起结焦。
2.4混合煤掺烧
混合掺烧不同的煤种,特别是混烧结焦性强和结焦性差的煤种,是预防结焦、提高锅炉热效率的好方法;但结焦性强的煤种要避免和高灰分煤种混烧,这样会加剧锅炉的结焦。
2.5改善炉内空气动力工况
通过严格的空气动力场试验,缩小假想切圆的直径,并且把单切圆扰动改为双切圆扰动。由原来的一、二次风混合燃烧扰动的一个假想切圆,改造成由一次风粉扰动和二次风扰动形成的2个假想切圆,二次风切圆在外,防止了煤粉气流的贴壁、飞边现象,从而有效地避免了水冷壁结焦。要堵塞漏
风,漏风破坏了正常的炉内空气动力工况,影响火焰充满程度与搅拌混合情况,并改变了火焰中心位置,降低炉温,使燃料着火推迟,火焰中心上移,促使受热面结焦。
炉膛热负荷、炉膛内燃烧工况、氧量在运行中可以监测到,若发现异常,应及时调整,有结焦应及时清除,这是防止结焦的有效手段。
4. 洗煤厂浓缩机的作用
洗煤的主要目的是什么?洗煤的主要目的概括来讲就是:降低灰分、去除杂质、提高质量、保护环境。
简单说,洗煤是为了炼焦,也就是将各种不同成分含量的煤组合到一块进行炼焦。
洗煤的过程就是根据煤的原始成分含量洗出的不同标号的煤的过程,煤的比重比水小,利用水的浮力,把煤和煤矸石分开,这个过程叫洗煤,洗煤就是将原煤中的杂质剔除,或将优质煤和劣质煤炭进行分门别类的一种工业工艺。
洗煤过程后所产生的产品一般分为有矸石、中煤、乙级精煤、甲级精煤,经过洗煤过程后的成品煤通常叫精煤,它一般具有灰分低、硫分低、发热值高的性质。
通过洗煤,可以降低煤炭运输成本,提高煤炭的利用率,精煤是一般可做燃料用的能源,烟煤的精煤一般主要用于炼焦,它要经过去硫,去杂质等工业过程,以达到炼焦用的标准。
洗煤过程都要用到哪些药剂?洗煤过程要用到以下的药剂,起泡剂、浮选剂,消泡剂,水,重液,后续处理还需要絮凝剂(聚丙烯酰胺作为絮凝剂使用)、硫酸铝、硫酸铁以及他们的聚合物作为凝聚剂使用,或者用聚合氯化铝做凝集剂用,聚合氯化铝在选煤厂一般用作凝聚剂和助滤剂使用,当煤泥水泥化严重时,只使用絮凝剂效果会比较差,因此需要先加入凝聚剂打破胶体,然后再使用絮凝剂(聚丙烯酰胺)。
有时在脱水环节为了改善脱水效果,也使用聚合氯化铝作为助滤剂。
聚丙烯酰胺为使煤泥水在浓缩池中快速沉淀,保证合格洗水与压滤煤泥生产,使生产高效经济运行,必须选择合适的絮凝剂来加强煤泥水的处理。
通过近几年的生产实践证明,聚丙烯酰胺对煤泥水处理效果较好,能加速煤泥的沉降,并有助于压滤生产。
5. 煤粉浓缩器工作原理
随着工业的发展,二氧化硫造成大气污染及其危害,已日益成为人们关注的环境问题。因此,控制燃煤锅炉排放的二氧化硫,对于控制大气污染,改善生态环境有着举足轻重的意义。
下面就脱硫的方法及其比较作一简要的介绍。
按与燃烧的结合点区分,脱硫方法有:a.燃烧前脱硫—~煤脱硫; b燃烧中脱硫——炉内脱硫; C.燃烧后脱硫———烟气脱硫。
按脱硫后有无付产品回收区分有抛弃法和回收法。
1 煤脱硫
浮选法工业应用,主要有:强磁分选、细菌处理、苛性碱浸提等方法只用于脱除无机硫;微波辐射、溶剂浸提、热分解、酸碱处理、氧化还原处理、亲核置换宰方法能同时脱除有机硫和无机硫,其中强磁分选与微波辐射较受重视。
1.机械分选法(MF)
利用煤质与灰中无机硫比重不同,用浮选法浮选,用水作浮选剂。
2 . 强磁分选法(HMS)
利用强磁场将煤中顺磁性的无机硫与反磁性的煤质分离。
3 . 微波辐射法(MCD)
用电磁波照射经水或碱或三氯化铁盐类处理过的50~100℃煤粉,能使煤粉中的Fe一S和C—S等化学键发生共振而裂解,形成的游离硫可与氢、氧反应生成硫化氢、二氧化硫低分子等气体,从煤中逸出,将逸出的气体收集处理,可以得到硫磺付产品。
2 炉内脱硫
1、石灰石注入炉内分段燃烧(LIMB)
为了抑制二氧化氮,后来发展为喷钙,采用合适的受热面布置,可使炉内温度控制在 850~950℃,因而抑制了二氧化氮 。当 Ca/S比为2时,同时获得50%左右的脱硫效率。用石灰石及消石灰作脱硫剂,Ca/S摩尔比为2时,脱硫效率分别为32和44%。该法适用干老厂改造。
2.炉内注入石灰石并活化氧化钙法(LIFAC)
将石灰石于锅炉的1150℃左右区段注入,碳酸钙迅速分解成氧化钙,同时起到一些固硫作用。在尾部烟道适当部位(一般在空气预热器与除尘器之问)设置增湿活化反应器,使未反应的氧化钙水合成氢氧化钙,进一步脱硫,总脱硫率70%。采用压力消化石灰代替石灰石,可以进~步提高脱硫剂的利用率和脱硫效率; Ca/S— l、5时,脱硫率达80%。这是因为用加压水化,在快速缺压出料中,水合物爆裂,形成高度分散的微粒,既有利于直接喷粉,且其脱硫率最高。但该法不能同时脱除二氧化氮,该法适用干老厂改造。
3 烟气脱硫(FGD)
按照处理状态分为干法和湿法两类。
1、干法——脱硫过程多数属气固反应,速度相对较低,烟气在反应器中的流速较慢,延长反应时间,故设备较庞大,但脱硫后的烟气降温较少或不降温,故不需再加热(耗能少),即可满足排放扩散要求。此外,二次污染少、无结垢、堵塞、可靠性高。
(1)BF移动床活性炭脱硫(BF/FW)
用活性炭作脱硫剂,在脱硫移动床中与约100℃烟气错流接触,以脱除二氧化硫,脱硫率90%以上。吸附了二氧化硫的活性炭在再生移动床中与 500~ 600 ℃热砂(或其它热载)体合,被炭还原成二氧化硫逸出,用于制硫酸,向烟气中添加氨用双层床处理,可同时脱除80%的二氧化氮。
(2)电子束照射法 (EK)
其原理是:含水分的烟气在电子束的照射下,烟气中的水被激活裂解成HO、O等强氧化剂,能迅速将二氧化硫和二氧化氮氧化成三氧化硫和五氧化二氮,再与添加的氨化合成硫铵和硝铵,用除尘器收集作为肥料付产品。脱硫率90%,脱硝率80%。整套装置电耗高,约占厂发电量的10%。
(3)喷雾千燥法(SDA)
它是七十年代发展起来的。它是用石灰奖作脱硫剂,用雾化器将石灰浆水溶液喷入吸收塔内,石灰浆以极细的雾滴与烟气中的二氧化硫接触。并发生化学反应,生成亚硫酸钙和硫酸钙。利用烟气中的热量使雾滴的水份汽化,干燥后的粉未随脱硫后的烟气带走,用除尘器捕集,脱硫率70~90%;当Ca/S—1.5时,脱硫率为85%,这是~种在湿状态下脱硫。在干状态下处理脱硫产物的方法,亦称为半干式。喷雾干燥加布袋除尘,脱硫率可达90%以上.允许煤含硫量可达3%,可与湿法相竞争,这种方法的主要特点是;因吸收塔出来的废料是干的,与湿式石灰石法相比.省去了庞大的废料处理系统,使工艺流程大为简化,该法的关键技术是石灰石浆液的雾化器和吸收干燥塔。现在使用最广泛的是离心转盘雾化器。因此,该法在我国应用前景好。
(4)粉煤灰干式脱硫
脱硫剂由粉煤灰、消石灰和石膏为原料,制成颗粒状将它们装在吸收塔中形成移动层。当脱硫剂在塔中自上而下地移动时,其中的消石灰氢氧化钙与烟气中的二氧化硫反应生成石膏,而脱硫剂中的煤灰和石膏则起活性媒体的作用。用过后的脱硫剂还可以作为生产脱硫剂的原料再被重新利用。
2、湿法——其基本过程是用脱硫溶液洗涤烟气,气液传质过程一般较气固快,设备相对较小,效率较高(90%),运行可靠。主要缺点是;工艺复杂,占地面积大,投资费用高,净化后的烟温较低,需对其再加热,以利排放后扩散。
(1)石灰石或石灰洗涤法(LW)
使用氧化钙或碳酸钙浆液在湿式洗涤器中吸收二氧化硫,浆液从塔顶向下喷淋,烟气从塔底向上流动,使二氧化硫与浆液充分接触。大部分生成亚石膏固体,一般均将其氧化成石膏,可作为废渣抛弃,也可回收石膏。研究发现:加入氧化钙可以将石灰浆的吸收能力提高10~15倍。主要关键技术之一是用泥浆洗涤中需防止堵塞与结垢,可采用石灰石一石膏加添加剂甲酸(HCOOH),生成易溶于水的硫酸氢盐,而不是难溶于水的亚硫酸钙,较好地解央了结垢与堵塞问题。此外,还有废液处理和排烟再加热问题。
(2)亚硫酸钠循环洗涤法 (W—L法)
石灰/石灰石法后期生成的付产品价值甚低,而且往往无法外理。(W一L)法就是寻求回收付产品新途经基础上发展起来的。利用30%左右的碱液(如碳酸钠溶液)洗涤烟气吸收二氧化硫产生亚硫酸氢钠,在105℃封闭系统中进行热分解,使亚硫酸钠再生,重复使用。同时获得浓二氧化硫气体,可压缩成价格较高的液体二氧化硫,也可制成硫酸或硫磺产品,脱硫率95%。该法缺点是:投资大,运行费用较高(碱耗高),系统中由于亚硫酸盐的生成,随之而来的是PH值的降低和腐蚀加剧,适用于有碱源的地区采用。
(3)磷铵肥法(PAFP)
它是一种直接付产氮磷复合肥料的烟气脱硫方法。其过程包括催化脱硫制酸,即利用活性炭吸附将姻气中的二氧化硫脱除下来,再和水蒸汽反应生成稀硫酸,然后用稀硫酸分解磷矿石制取磷酸。用氨中和磷酸制得磷铵作为二级脱硫剂,所得到的肥料浆经过氧化并在蒸发设备中浓缩和干燥机中干燥。最后变固体氮磷复合肥料,具有较高的经济效益。而且该法系统简单、经济效益好,投资费用低、运行可靠,无堵塞问题。炉内喷钙脱硫虽然脱硫效率较烟气脱硫去较低,但投资和运行费用较低,能耗较低,工艺过程简单。因此,比较适用于小容量、燃低硫煤的和排放量超标的老厂机组。对需要脱硫的大机组,可采用LIFAC效率较高或其它脱硫工艺。