交流伺服电机机械特性(交流伺服电机机械特性硬还是软)

海潮机械 2023-01-05 16:20 编辑:admin 250阅读

1. 交流伺服电机机械特性硬还是软

伺服电机是指在伺服系统中控制机械元件运转的发动机,是一种补助马达间接变速装置。有交流伺服电机与直流伺服电机。他们的区别如下:

一、原理不同:

1、交流伺服电机的定子三相线圈是由伺服编码控制电路供电的,转子是永磁式的、电机的转向、速度、转角都是由编码控制器所决定的。

2、直流伺服电机的转子也是用磁体的,定子绕组则是由表伺服编码脉冲电路供电。

二、维修成本不同:

1、交流伺服电机维护方便。

2、直流伺服电机容易实现调速,控制精度高,但维护成本高操作麻烦。

三、控制方式不同:

1、交流伺服电机控制方式有三种,幅值控制、相位控制和幅相控制。

2、直流伺服电机的控制方式主要有两种:电枢电压控制、励磁磁场控制。

四、性能不同:

1、交流电机的特性是比较软,当达到额定力矩后,如果负载力矩增加,就很容易造成突然的失速。但是直流电动机具有响应快速、较大的起动转矩、从零转速至额定转速具备可提供额定转矩的性能。 交流电机虽然没有碳刷及整流子,免维护、坚固、应用广,但特性上若要达到相当于直流电机的性能须用复杂控制技术才能达到。现今半导体发展迅速功率组件切换频率加快许多,提升驱动电机的性能。

2、直流伺服电机,它包括定子、转子铁芯、电机转轴、伺服电机绕组换向器、伺服电机绕组、测速电机绕组、测速电机换向器,所述的转子铁芯由矽钢冲片叠压固定在电机转轴上构成。直流电机有着良好精确的速度控制特征不说,还有可以再整个速度区内实现平滑控制,几乎没有任何振荡,高效率,不发热。

2. 伺服电机稳定性

两个都用过,总的来说还是广数的好些,去年我用的华大,有现过很多编码器的问题,估计以前编码器是进口的,现在是自己做的吧。

如果要响应的话你看要用在什么机床上面,精度要求不高的车床和铣床可以撮合着用,最好还是用进口的吧,安川,三菱都不错,

3. 伺服电机的缺点

9个常见故障及对策!

1.轴承故障是最常见的电机故障之一。作为伺服电机中最主要的磨损件,一半以上伺服电机故障通常都归因于轴承问题。其具体表现多种多样,轻则电机转动时产生抖动、异响等,重则导致电机转轴卡死。值得注意的是,轴承故障如未得到及时的处理,通常还会带来次生损害。例如,轴承锈蚀的碎屑飞入制动器或电机编码器,造成更加严重的损失。

对策:①在使用伺服电机时不能长时间超过额定负载运行;②对于有轴电流的场合,增加导电刷或者采用含绝缘轴承的电机;③对伺服电机进行预防性维护。

2.对于电机应用(尤其是电机轴与机械设备的连接处)暴露在污染环境的场合,伺服电机通常需要配备油封。电机轴工业级骨架油封能够阻隔污染物(油类、杂质类)来延长电机寿命。轴密封较易磨损,需定期检查和替换。

对策:预防性维护;根据使用情况,建议每 3 个月替换一次,最长不超过 12 个月。

3.当绕组发生故障时,电机的一部分会发生短路,导致电机内部烧灼。

对策:①在使用伺服电机时不能长时间超过额定负载运行;②监控电流及电流随时间的积累;③监控绕组温度。

4.与异步电机不同,伺服电机的转子通常由永磁体构成。永磁体磁片通过贴面或者嵌入的方式,固定在电机的转轴上。

对策 :①在额定的负载下运行;②避免意外的碰撞。

5.电机反馈装置(旋转变压器、编码器等)将位置信号反馈给驱动器,从而使驱动器发出精确地电流以便进行精准的位置控制。多圈绝对值编码器则另具圈数记录的功能。采用后备电池技术的多圈绝对值编码器,依赖外部电池的电能记录转子圈数信息。而采用机械齿轮结构的多圈编码器,通过霍尔原理可以永久的记录圈数而无需维护,但成本相对较高。

对策:①取决于具体应用环境,电池的寿命通常为一年或数年。定期更换电池,可以减少这类意外风险。或者,更加一劳永逸的做法是,改用机械多圈的绝对值编码器。②电机的安装必须要可靠接地。对于有轴电流的情况,需要考虑使用绝缘轴承和绝缘编码器或者加装电机轴接地装置。③电机的安装过程中,例如加装皮带轮或联轴器时,如果不可避免敲击,可以考虑先将编码器拆下保存,待全部机械安装完成后再安装编码器。这样的话,需要在伺服驱动器中重新调整编码器的相位角。④另一种预防码盘故障的办法是,采用近年来开始流行的金属码盘编码器。与玻璃码盘相比,金属码盘的抗振动和抗冲击性能要提高很多,而在分辨率和精度上则可以与玻璃码盘旗鼓相当。

6.电机制动器是用于电源关闭时,将电机轴制动,防止转动;在制动器通电时,制动器处于释放状态。

对策:值得注意的是,作为电机的静止保持装置,制动器不应在电机通电的状态下,作为电机减速装置来使用,这样会加速制动器的磨损。

7.大部分中小功率的伺服电机都采用是自冷却。对于功率较大或特殊应用场合的伺服电机,也常见风冷或者液冷。

对策:①为风扇增加滤网并定期更换;②定期检查冷却装置。

8.这里包括接线端子盒和插座。

对策:使用时应多加小心,尽量避免意外。

9.连接电机轴需要抗扭刚性联轴器或加固型的皮带。电机工作一段时间后,频繁的加减速可导致联轴器或皮带变松或滑动,这时候应该再次检查。

对策:因此在安装或拆卸过程中,严禁使用工具敲击轴、联轴器或滑轮。尝试从电机轴上拆下任何设备时,应使用液压装置从轴端顶出。

4. 特性的软硬对机电传动系统有什么意义

应该是软硬结合。

从CVT的结构就可以看出来,CVT跟AT一样有液力变矩器,他们之间最大的不同是在与CVT行驶过程中升降挡时(准确说叫改变传动比,因为它没有档位),锁止离合器是锁止状态,也就是说CVT除了在起步的时候液力变矩器工作(软连接,减少冲击,起步平顺),其余升降挡均采用硬连接。这样在整个行车过程中,CVT在液力变矩器的损失就会更少。

5. 什么是直流伺服电动机的机械特性硬度

  R/C伺服电机(R/C 微型伺服马达 ):  R/C伺服电机(servo motor )是指在伺服系统中控制机械元件运转的发动机,是一种补助马达间接变速装置。  R/C伺服电机可使控制速度,位置精度非常准确,可以将电压信号转化为转矩和转速以驱动控制对象。伺服电机转子转速受输入信号控制,并能快速反应,在自动控制系统中,用作执行元件,且具有机电时间常数小、线性度高、始动电压等特性,可把所收到的电信号转换成电动机轴上的角位移或角速度输出。分为直流和交流伺服电动机两大类,其主要特点是,当信号电压为零时无自转现象,转速随着转矩的增加而匀速下降。

6. 伺服电机和普通电机的优缺点

伺服电机的优点:

1、精度:实现了位置,速度和力矩的闭环控制;克服了步进电机失步的问题;

2、转速:高速性能好,一般额定转速能达到2000~3000转;

3、适应性:抗过载能力强,能承受三倍于额定转矩的负载,对有瞬间负载波动和要求快速起动的场合特别适用;

4、稳定:低速运行平稳,低速运行时不会产生类似于步进电机的步进运行现象。适用于有高速响应要求的场合;

5、及时性:电机加减速的动态相应时间短,一般在几十毫秒之内;

6、舒适性:发热和噪音明显降低。伺服电机的缺点:伺服电机可以用在会受水或油滴侵袭的场所,但是它不是全防水或防油的。因此, 伺服电机不应当放置或使用在水中或油侵的环境中。扩展资料:直流伺服电机的基本特性:1、机械特性 在输入的电枢电压Ua保持不变时,电机的转速n随电磁转矩M变化而变化的规律,称直流电机的机械特性。2、调节特性 直流电机在一定的电磁转矩M(或负载转矩)下电机的稳态转速n随电枢的控制电压Ua变化而变化的规律,被称为直流电机的调节特性。3、动态特性 从原来的稳定状态到新的稳定状态,存在一个过渡过程,这就是直流电机的动态特性。交流伺服电机:交流伺服电机定子的构造基本上与电容分相式单相异步电动机相似.其定子上装有两个位置互差90°的绕组,一个是励磁绕组Rf,它始终接在交流电压Uf上;另一个是控制绕组L,联接控制信号电压Uc。所以交流伺服电动机又称两个伺服电动机。在控制策略上,基于电机稳态数学模型的电压频率控制方法和开环磁通轨迹控制方法都难以达到良好的伺服特性,当前普遍应用的是基于永磁电机动态解耦数学模型的矢量控制方法,这是现代伺服系统的核心控制方法。

7. 交直流伺服电机机械特性哪个更好

● 控制电动机

1无刷直流电动机

无刷直流电机(BLDCM)是在有刷直流电动机的基础上发展来的,但它的驱动电流是不折不扣的交流;无刷直流电机又可以分为无刷速率电机和无刷力矩电机。一般地,无刷电机的驱动电流有两种,一种是梯形波(一般是“方波”),另一种是正弦波。有时候把前一种叫直流无刷电机,后一种叫交流伺服电机,确切地讲是交流伺服电动机的一种。

无刷直流电机为了减少转动惯量,通常采用“细长”的结构。无刷直流电机在重量和体积上要比有刷直流电机小的多,相应的转动惯量可以减少40%—50%左右。由于永磁材料的加工问题,致使无刷直流电机一般的容量都在100kW以下。

这种电动机的机械特性和调节特性的线性度好,调速范围广,寿命长,维护方便噪声小,不存在因电刷而引起的一系列问题,所以这种电动机在控制系统中有很大的应用潜力。

2 步进电动机

所谓步进电动机就是一种将电脉冲转化为角位移的执行机构;更通俗一点讲:当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度。我们可以通过控制脉冲的个数来控制电机的角位移量,从而达到精确定位的目的;同时还可以通过控制脉冲频率来控制电动机转动的速度和加速度,从而达到调速的目的。目前,比较常用的步进电动机包括反应式步进电动机(VR)、永磁式步进电动机(PM)、混合式步进电动机(HB)和单相式步进电动机等。

步进电动机和普通电动机的区别主要就在于其脉冲驱动的形式,正是这个特点,步进电动机可以和现代的数字控制技术相结合。但步进电动机在控制精度、速度变化范围、低速性能方面都不如传统闭环控制的直流伺服电动机;所以主要应用在精度要求不是特别高的场合。由于步进电动机具有结构简单、可靠性高和成本低的特点,所以步进电动机广泛应用在生产实践的各个领域;尤其是在数控机床制造领域,由于步进电动机不需要A/D转换,能够直接将数字脉冲信号转化成为角位移,所以一直被认为是最理想的数控机床执行元件。

除了在数控机床上的应用,步进电机也可以用在其他的机械上,比如作为自动送料机中的马达,作为通用的软盘驱动器的马达,也可以应用在打印机和绘图仪中。

此外,步进电动机也存在许多缺陷;由于步进电机存在空载启动频率,所以步进电机可以低速正常运转,但若高于一定速度时就无法启动,并伴有尖锐的啸叫声;不同厂家的细分驱动器精度可能差别很大,细分数越大精度越难控制;并且,步进电机低速转动时有较大的振动和噪声。

3伺服电动机

伺服电动机广泛应用于各种控制系统中,能将输入的电压信号转换为电机轴上的机械输出量,拖动被控制元件,从而达到控制目的。

伺服电动机有直流和交流之分;最早的伺服电动机是一般的直流电动机,在控制精度不高的情况下,才采用一般的直流电机做伺服电动机。目前的直流伺服电动机从结构上讲,就是小功率的直流电动机,其励磁多采用电枢控制和磁场控制,但通常采用电枢控制。

旋转电机的分类,直流伺服电动机在机械特性上能够很好的满足控制系统的要求,但是由于换向器的存在,存在许多的不足:换向器与电刷之间易产生火花,干扰驱动器工作,不能应用在有可燃气体的场合;电刷和换向器存在摩擦,会产生较大的死区;结构复杂,维护比较困难。

交流伺服电动机本质上是一种两相异步电动机,其控制方法主要有三种:幅值控制、相位控制和幅相控制。

一般地,伺服电动机要求电动机的转速要受所加电压信号的控制;转速能够随着所加电压信号的变化而连续变化;电动机的反映要快、体积要小、控制功率要小。伺服电动机主要应用在各种运动控制系统中,尤其是随动系统。

4力矩电动机

所谓的力矩电动机是一种扁平型多极永磁直流电动机。其电枢有较多的槽数、换向片数和串联导体数,以降低转矩脉动和转速脉动。力矩电动机有直流力矩电动机和交流力矩电动机两种。

其中,直流力矩电动机的自感电抗很小,所以响应性很好;其输出力矩与输入电流成正比,与转子的速度和位置无关;它可以在接近堵转状态下直接和负载连接低速运行而不用齿轮减速,所以在负载的轴上能产生很高的力矩对惯性比,并能消除由于使用减速齿轮而产生的系统误差。

交流力矩电动机又可以分为同步和异步两种,目前常用的是鼠笼型异步力矩电动机,它具有低转速和大力矩的特点。一般地,在纺织工业中经常使用交流力矩电动机,其工作原理和结构和单相异步电动机的相同,但是由于鼠笼型转子的电阻较大,所以其机械特性较软。

5开关磁阻电动机

开关磁阻电动机是一种新型调速电动机,结构极其简单且坚固,成本低,调速性能优异,是传统控制电动机强有力竞争者,具有强大的市场潜力。

● 功率电动机

1 直流电动机

直流电动机是出现最早的电动机,大约在19世纪末,其大致可分为有换向器和无换向器两大类。直流电动机有较好的控制特性直流电动机在结构、价格、维护方面都不如交流电动机,但是由于交流电动机的调速控制问题一直未得到很好的解决方案,而直流电动机具有调速性能好、起动容易、能够载重起动等优点,所以目前直流电动机的应用仍然很广泛,尤其在可控硅直流电源出现以后。

2 异步电动机

异步电动机是基于气隙旋转磁场与转子绕组感应电流相互作用产生电磁转矩而实现能量转换的一种交流电机。异步电动机一般为系列产品,品种规格繁多,其在所有的电动机中应用最为广泛,需量最大;目前,在电力传动中大约有90%的机械使用交流异步电动机,所以,其用电量约占总电力负荷的一半以上。

异步电动机具有结构简单,制造、使用和维护方便,运行可靠以及质量较小,成本较低等优点。并且,异步电机有较高的运行效率和较好的工作特性,从空载到满载范围内接近恒速运行,能满足大多数工农业生产机械的传动要求。异步电动机主要广泛应用于驱动机床、水泵、鼓风机、压缩机、起重卷扬设备、矿山机械、轻工机械、农副产品加工机械等大多数工农生产机械以及家用电器和医疗器械等。

在异步电动机中较为常见的是单相异步电动机和三相异步电动机,其中三相异步电动机是异步电动机的主体。而单相异步电动机一般用于三相电源不方便的地方,大部分是微型和小容量的电机,在家用电器中应用比较多,例如电扇、电冰箱、空调、吸尘器等。

3 同步电动机

所谓同步电动机就是在交流电的驱动下,转子与定子的旋转磁场同步运行的电动机。同步电动机的定子和异步电动机的完全一样;但其转子有“凸极式”和“隐极式”两种。凸极式转子的同步电动机结构简单、制造方便,但是机械强度较低,适用于低速运行场合;隐极式同步电动机制造工艺复杂,但机械强度高,适用于高速运行场合。

同步电动机的工作特性与所有的电动机一样, 同步电动机也具有“可逆行”,即它能按发电机方式运行,也可以按电动机方式运行。

同步电动机主要用于大型机械,如鼓风机、水泵、球磨机、压缩机、轧钢机以及小型、微型仪器设备或者充当控制元件;其中三相同步电动机是其主体。此外,还可以当调相机使用,向电网输送电感性或者电容性无功功率。

●信号电机

1 位置信号电机

目前,最有代表性的位置信号电机:旋转变压器、感应同步器和自整角机。

旋转变压器本质上是可以随意改变一次绕组和二次绕组耦合程度的变压器。其结构和绕线式异步电动机相同,定子和转子各有两组相互垂直的分布绕组,转子绕组利用滑环和电刷与外电路联接。当一次绕组励磁以后,二次绕组的输出电压和转子的转角成正弦、余弦、线性或者其他函数关系,可以用于计算装置中的坐标变换和三角运算,还可以在控制系统中作为角度数据传输和移相器使用。

感应同步器是一种高精度的位置或角度检测元件,有圆盘式和直线式两种。圆盘式感应同步器用来测量转角位置;而直线式感应同步器用来测量线位移。

自整角机是一种感应式机电元件,被广泛地应用于随动系统中,作为角度传输、变换和指示的装置。在控制系统中经常两台或者多台联合使用,使机械上互不相连的两根或多根轴能够自动地保持相同的转角变化,或者同步旋转。

2 速度信号电机

最有代表性的速度信号电机是测速发电机,其实质上是一种将转速变换为电信号的机电磁元件,其输出电压与转速成正比。从工作原理上讲,它属于“发电机”的范畴。测速发电机在控制系统中主要作为阻尼元件、微分元件、积分元件和测速元件来使用。

测速发电机有直流和交流之分;而直流测速发电机又有他励和永磁之分,其结构和工作原理与小功率直流发电机相同,通常输出功率较小,作为计算元件时要求其输出电压的线性误差和温度误差低于一个上限。而交流测速发电机又有同步和异步之分;同步测速发电机包括:永磁式、感应式和脉冲式;异步测速发电机应用最广泛的是杯型转子异步测速发电机。

8. 伺服电机的优缺点

电机与被拖动的设备通过轴伸进行对接,传动方式分三种,即皮带传动、联轴器连接传动和齿轮传动。今天我们重点谈皮带轮传动方式。

皮带轮传动方式

皮带轮传动是分别在电机轴伸和被拖动设备轴伸上固定皮带轮,通过皮带与轮的摩擦力作用进行传动。为了保证传动的正常进行,电机与设备的转轴应呈空间的平行状态,皮带应与电机轴及设备轴均处垂直状态。为了更好地理解电机、设备及传动皮带的空间关系,我们可以将三者均理解为三条线段,保证电机与设备正常工作的必要条件是三条线呈“工”字型。

为了保证电机与设备运行的安全性,初期的安装及固定非常重要,电机运行过程中,应进行周期性检查,预防因为固定不好导致设备运行的不良后果。

理解皮带传动的特点,我们可以通过链条传动的自行车进行直观的理解;也可以理解为滑轮,电机轮理解为主动轮,设备的轮理解为从动轮。皮带传动的特点是传动转矩及相同线速度;皮带传动时,拖动的电机与设备可以有不同的角速度,当电机上皮带轮直径大于设备上的皮带轮直径时,设备角速度大于电机旋转角速度,反之,电机转速大于设备转速;两者皮带轮直径一致时,两者的角速度与线速度大小均一致。

按照能量转换原理,采用皮带传动时,相对于电机的角速度,设备变速为增速时,设备获得的转矩小于电机转矩;当设备变速为减速时,设备获得的转矩大于电机转矩。

皮带轮传动的优、缺点

皮带轮传动可以缓和载荷的直接冲击,皮带轮传动运行平稳、低噪音、低振动,传动结构简单调整方便,,皮带轮传动的两轴中心距调节范围较大;对于皮带轮的制造和安装精度不象啮合传动严格,同时具有一定的过载保护功能。但是,皮带轮传动有弹性滑动和打滑传动问题,导致效率较低和不能保持准确传动比的缺点;当传动传递同样大的圆周力时,电机的使用寿命要相对短,也容易出现因为径向力作用导致的轴承损坏及断轴质量问题。

传动比是传动机构中两转动构件角速度的比值,也称速比。以传动比进行比较,联轴器方式传动比为1,而皮带传动和齿轮传动都可以实现变速作用。就传动比而言,齿轮传动比较稳定,而皮带传动会因为皮带安装不良、皮带老化等因素出现打滑或弹滑等问题。

按照变频调整的技术原理,联轴器连接方式更为普遍,特别是对于功率较大的电机,不建议采用皮带传动,以避免由此而导致的轴承系统及断轴质量问题。